
dynamo
Release 0.95.2

Xiaojie Qiu, Yan Zhang

Apr 14, 2021

CONTENTS

1 Discussion 3

2 Contribution 5
2.1 10 minutes to dynamo . 5

2.1.1 Why dynamo . 5
2.1.2 How to install . 5
2.1.3 Architecture of dynamo . 6
2.1.4 Typical workflow . 7
2.1.5 Compatibility . 12

2.2 API . 12
2.2.1 Data IO . 12
2.2.2 Preprocessing (pp) . 14
2.2.3 Estimation (est) . 14
2.2.4 Tools (tl) . 14
2.2.5 Vector field (vf) . 16
2.2.6 Prediction (pd) . 18
2.2.7 Plotting (pl) . 22
2.2.8 Moive (mv) . 24
2.2.9 Simulation (sim) . 25
2.2.10 External (ext) . 26
2.2.11 Utilities . 31

2.3 Class . 32
2.3.1 Estimation . 32
2.3.2 Vector field . 48
2.3.3 Movie . 52

2.4 Release notes . 54
2.5 Reference . 54
2.6 Acknowledgement . 54
2.7 Zebrafish pigmentation . 54

2.7.1 Load data . 55
2.7.2 RNA velocity with parallelism . 56
2.7.3 Velocity projection . 58
2.7.4 Reconstruct vector field . 61
2.7.5 Characterize vector field topology . 62
2.7.6 Beyond RNA velocity . 65
2.7.7 Integrative analysis . 66
2.7.8 Animate fate transition . 68

2.8 Pancreatic endocrinogenesis . 70
2.9 Dentate gyrus dataset . 79

i

3 Indices and tables 95

Bibliography 97

Python Module Index 99

Index 101

ii

dynamo, Release 0.95.2

Understanding how gene expression in single cells progress over time is vital for revealing the mechanisms governing
cell fate transitions. RNA velocity, which infers immediate changes in gene expression by comparing levels of new
(unspliced) versus mature (spliced) transcripts (La Manno et al. 2018), represents an important advance to these
efforts. A key question remaining is whether it is possible to predict the most probable cell state backward or forward
over arbitrary time-scales. To this end, we introduce an inclusive model (termed Dynamo) capable of predicting cell
states over extended time periods, that incorporates promoter state switching, transcription, splicing, translation and
RNA/protein degradation by taking advantage of scRNA-seq and the co-assay of transcriptome and proteome. We also
implement scSLAM-seq by extending SLAM-seq to plate-based scRNA-seq (Hendriks et al. 2018; Erhard et al. 2019;
Cao, Zhou, et al. 2019) and augment the model by explicitly incorporating the metabolic labelling of nascent RNA. We
show that through careful design of labelling experiments and an efficient mathematical framework, the entire kinetic
behavior of a cell from this model can be robustly and accurately inferred. Aided by the improved framework, we
show that it is possible to analytically reconstruct the transcriptomic vector field from sparse and noisy vector samples
generated by single cell experiments. The analytically reconstructed vector further enables global mapping of potential
landscapes that reflects the relative stability of a given cell state, and the minimal transition time and most probable
paths between any cell states in the state space This work thus foreshadows the possibility of predicting long-term
trajectories of cells during a dynamic process instead of short time velocity estimates. Our methods are implemented
as an open source tool, dynamo.

CONTENTS 1

https://github.com/aristoteleo/dynamo-release/runs/950435412
https://pypi.org/project/dynamo-release/
https://dynamo-release.readthedocs.io
https://github.com/aristoteleo/dynamo-release

dynamo, Release 0.95.2

2 CONTENTS

CHAPTER

ONE

DISCUSSION

Please use github issue tracker to report coding related issues of dynamo. For community discussion of novel us-
age cases, analysis tips and biological interpretations of dynamo, please join our public slack workspace: dynamo-
discussion (Only a working email address is required from the slack side).

3

(https://github.com/aristoteleo/dynamo-release/issues)
https://join.slack.com/t/dynamo-discussionhq/shared_invite/zt-ghve9pzp-r9oJ9hSQznWrDcx1fCog6g
https://join.slack.com/t/dynamo-discussionhq/shared_invite/zt-ghve9pzp-r9oJ9hSQznWrDcx1fCog6g

dynamo, Release 0.95.2

4 Chapter 1. Discussion

CHAPTER

TWO

CONTRIBUTION

If you want to contribute to the development of dynamo, please check out CONTRIBUTION instruction: Contribution

2.1 10 minutes to dynamo

Welcome to dynamo!

Dynamo is a computational framework that includes an inclusive model of expression dynamics with scSLAM-seq /
multiomics, vector field reconstruction and potential landscape mapping.

2.1.1 Why dynamo

Dynamo currently provides a complete solution (see below) to analyze expression dynamics of conventional scRNA-
seq or time-resolved metabolic labeling based scRNA-seq. It aspires to become the leading tools in continuously inte-
grating the most exciting developments in machine learning, systems biology, information theory, stochastic physics,
etc. to model, understand and interpret datasets generated from various cutting-edge single cell genomics techniques
(developments of dynamo 2/3 is under way). We hope those models, understandings and interpretations not only fa-
cilitate your research but may also eventually lead to new biological discovery. Dynamo has a strong community so
you will feel supported no matter you are a new-comer of computational biology or a veteran researcher who wants to
contribute to dynamo’s development.

2.1.2 How to install

Dynamo requires Python 3.6 or later.

Dynamo now has been released to PyPi, you can install the PyPi version via:

pip install dynamo-release

To install the newest version of dynamo, you can git clone our repo and then pip install:

git clone https://github.com/aristoteleo/dynamo-release.git
pip install dynamo-release/ --user

Note that --user flag is used to install the package to your home directory, in case you don’t have the root privilege.

Alternatively, you can install dynamo when you are in the dynamo-release folder by directly using python’s setup
install:

5

https://github.com/aristoteleo/dynamo-release/blob/master/CONTRIBUTING.md

dynamo, Release 0.95.2

git clone https://github.com/aristoteleo/dynamo-release.git
cd dynamo-release/
python setup.py install --user

from source, using the following script:

pip install git+https://github.com:aristoteleo/dynamo-release

In order to ensure dynamo run properly, your python environment needs to satisfy dynamo’s dependencies. We provide
a helper function for you to check the versions of dynamo’s all dependencies.

import dynamo as dyn
dyn.get_all_dependencies_version()

2.1.3 Architecture of dynamo

Dynamo has a few standard modules like most other single cell analysis toolkits (Scanpy, Monocle or Seurat), for
example, data loading (dyn.read*), preprocessing (dyn.pp.*), tool analysis (dyn.tl.*), and plotting (dyn.
pl.*). Modules specific to dynamo include:

• a comprehensive estimation framework (dyn.est.*) of expression dynamics that includes:

– conventional single cell RNA-seq (scRNA-seq) modeling (dyn.est.csc.*) for standard RNA
velocity estimation and more;

6 Chapter 2. Contribution

https://github.com/aristoteleo/dynamo-release/blob/master/setup.py

dynamo, Release 0.95.2

– time-resolved metabolic labeling based single cell RNA-seq (scRNA-seq) modeling (dyn.est.
tsc.*) for labeling based RNA velocity estimation and more;

• vector field reconstruction and vector calculus (dyn.vf.*);

• cell fate prediction (dyn.pd.*);

• create movie of cell fate predictions (dyn.mv.*);

• stochastic simulation of various metabolic labeling experiments (dyn.sim.*);

• integration with external tools built by us or others (dyn.ext.*);

• and more.

2.1.4 Typical workflow

A typical workflow in dynamo is similar to most of other single cell analysis toolkits (Scanpy, Monocle or Seurat),
including steps like importing dynamo (import dynamo as dyn), loading data (dyn.read*), preprocessing
(dyn.pp.*), tool analysis (dyn.tl.*) and plotting (dyn.pl.*). To get the best of dynamo though, you need to
use the dyn.vf.*, dyn.pd.* and dyn.mv.* modules.

Import dynamo as:

import dynamo as dyn

We provide a few nice visualization defaults for different purpose:

dyn.configuration.set_figure_params('dynamo', background='white') # jupter notebooks
dyn.configuration.set_figure_params('dynamo', background='black') # presentation
dyn.configuration.set_pub_style() # manuscript

2.1. 10 minutes to dynamo 7

dynamo, Release 0.95.2

Load data

Dynamo relies on anndata for data IO. You can read your own data via read, read_loom, read_h5ad, read_h5
or load_NASC_seq, etc:

adata = dyn.read(filename)

Dynamo also comes with a few builtin sample datasets so you can familiarize with dynamo before analyzing your own
dataset. For example, you can load the Dentate Gyrus example dataset:

adata = dyn.sample_data.DentateGyrus()

There are many sample datasets available. You can check other available datasets via dyn.sample_data.*.

To process the scSLAM-seq data, please refer to the NASC-seq analysis pipeline. We are also working on a command
line tool for this and will release it in due time. For processing splicing data, you can either use the velocyto command
line interface or the bustool from Pachter lab.

Preprocess data

After loading data, you are ready to performs some preprocessing. You can run the recipe_monocle function
that uses similar but generalized strategy from Monocle 3 to normalize all datasets in different layers (the spliced
and unspliced or new, i.e. metabolic labelled, and total mRNAs or others), followed by feature selection and PCA
dimension reduction.

dyn.pp.recipe_monocle(adata)

Learn dynamics

Next you will want to estimate the kinetic parameters of expression dynamics and then learn the velocity values for all
genes that pass some filters (selected feature genes, by default) across cells. The dyn.tl.dynamics does all the
hard work for you:

dyn.tl.dynamics(adata)

implicitly calls dyn.tl.moments first

dyn.tl.moments(adata)

which calculates the first, second moments (and sometimes covariance between different layers) of the expression
data. First / second moments are basically mean and uncentered variance of gene expression, which are calculated
based on local smoothing via a nearest neighbours graph, constructed in the reduced PCA space from the spliced or
total mRNA expression of single cells.

And it then performs the following steps:

• checks the data you have and determine the experimental type automatically, either the conventional scRNA-
seq, kinetics, degradation or one-shot single-cell metabolic labelling experiment or the CITE-seq
or REAP-seq co-assay, etc.

• learns the velocity for each feature gene using either the original deterministic model based on a steady-state as-
sumption from the seminal RNA velocity work or a few new methods, including the stochastic (default) or
negative binomial method for conventional scRNA-seq or kinetic, degradation or one-shot
models for metabolic labeling based scRNA-seq.

8 Chapter 2. Contribution

https://anndata.readthedocs.io/en/latest/index.html
https://github.com/sandberg-lab/NASC-seq
http://velocyto.org/velocyto.py/tutorial/cli.html
http://velocyto.org/velocyto.py/tutorial/cli.html
http://pachterlab.github.io/kallistobus
https://cole-trapnell-lab.github.io/monocle3/

dynamo, Release 0.95.2

Those later methods are based on moment equations. All those methods use all or part of the output from dyn.tl.
moments(adata).

Kinetic estimation of the conventional scRNA-seq and metabolic labeling based scRNA-seq is often tricky and has a
lot pitfalls. Sometimes you may even observed undesired backward vector flow. You can evaluate the confidence of
gene-wise velocity via:

dyn.tl.gene_wise_confidence(adata, group='group', lineage_dict={'Progenitor': [
→˓'terminal_cell_state']})

and filter those low confidence genes for downstream Velocity vectors analysis, etc (See more details in FAQ).

Dimension reduction

By default, we use umap algorithm for dimension reduction.

dyn.tl.reduceDimension(adata)

If the requested reduced dimension is already existed, dynamo won’t touch it unless you set enforce=True.

dyn.tl.reduceDimension(adata, basis='umap', enforce=True)

Velocity vectors

We need to project the velocity vector onto low dimensional embedding for later visualization. To get there, we can
either use the default correlation/cosine kernel or the novel Itô kernel from us.

dyn.tl.cell_velocities(adata)

The above function projects and evaluates velocity vectors on umap space but you can also operate them on other
basis, for example pca space:

dyn.tl.cell_velocities(adata, basis='pca')

You can check the confidence of cell-wise velocity to understand how reliable the recovered velocity is across cells
via:

dyn.tl.cell_wise_confidence(adata)

Obviously dynamo doesn’t stop here. The really exciting part of dynamo lays in the fact that it learns a functional
form of vector field in the full transcriptomic space which can be then used to predict cell fate and map
single cell potential landscape.

Vector field reconstruction

In classical physics, including fluidics and aerodynamics, velocity and acceleration vector fields are used as fundamen-
tal tools to describe motion or external force of objects, respectively. In analogy, RNA velocity or protein accelerations
estimated from single cells can be regarded as sparse samples in the velocity (La Manno et al. 2018) or acceleration
vector field (Gorin, Svensson, and Pachter 2019) that defined on the gene expression space.

In general, a vector field can be defined as a vector-valued function f that maps any points (or cells’ expression state) x
in a domain with D dimension (or the gene expression system with D transcripts / proteins) to a vector y (for example,
the velocity or acceleration for different genes or proteins), that is f(x) = y.

2.1. 10 minutes to dynamo 9

dynamo, Release 0.95.2

To formally define the problem of velocity vector field learning, we consider a set of measured cells with pairs of
current and estimated future expression states. The difference between the predicted future state and current state
for each cell corresponds to the velocity vector. We note that the measured single-cell velocity (conventional RNA
velocity) is sampled from a smooth, differentiable vector field f that maps from xi to yi on the entire domain. Normally,
single cell velocity measurements are results of biased, noisy and sparse sampling of the entire state space, thus the
goal of velocity vector field reconstruction is to robustly learn a mapping function f that outputs yj given any point
xj on the domain based on the observed data with certain smoothness constraints (Jiayi Ma et al. 2013). Under ideal
scenario, the mapping function f should recover the true velocity vector field on the entire domain and predict the true
dynamics in regions of expression space that are not sampled. To reconstruct vector field function in dynamo, you can
simply use the following function to do all the heavy-lifting:

dyn.vf.VectorField(adata)

By default, it learns the vector field in the pca space but you can of course learn it in any space or even the original
gene expression space.

Characterize vector field topology

Since we learn the vector field function of the data, we can then characterize the topology of the full vector field space.
For example, we are able to identify

• the fixed points (attractor/saddles, etc.) which may corresponds to terminal cell types or progenitors;

• nullcline, separatrices of a recovered dynamic system, which may formally define the dynamical behaviour or
the boundary of cell types in gene expression space.

Again, you only need to simply run the following function to get all those information.

dyn.vf.topography(adata, basis='umap')

Map potential landscape

The concept of potential landscape is widely appreciated across various biological disciplines, for example the adaptive
landscape in population genetics, protein-folding funnel landscape in biochemistry, epigenetic landscape in develop-
mental biology. In the context of cell fate transition, for example, differentiation, carcinogenesis, etc, a potential
landscape will not only offers an intuitive description of the global dynamics of the biological process but also pro-
vides key insights to understand the multi-stability and transition rate between different cell types as well as to quantify
the optimal path of cell fate transition.

Because the classical definition of potential function in physics requires gradient systems (no curl or cycling dy-
namics), which is often not applicable to open biological system. In dynamo we provided several ways to quantify
the potential of single cells by decomposing the vector field into gradient, curl parts, etc. The recommended method
is built on the Hodge decomposition on simplicial complexes (a sparse directional graph) constructed based on the
learned vector field function that provides fruitful analogy of gradient, curl and harmonic (cyclic) flows on manifold:

dyn.ext.ddhodge(adata)

In addition, we and others proposed various strategies to decompose the stochastic differential
equations into either the gradient or the curl component from first principles. We then can use the gradient part to
define the potential.

Although an analytical decomposition on the reconstructed vector field is challenging, we are able to use a numerical
algorithm we recently developed for our purpose. This approach uses a least action method under the A-type stochastic
integration (Shi et al. 2012) to globally map the potential landscape (x) (Tang et al. 2017) by taking the vector field
function f(x) as input.

10 Chapter 2. Contribution

dynamo, Release 0.95.2

dyn.vf.Potential(adata)

Visualization

In two or three dimensions, a streamline plot can be used to visualize the paths of cells will follow if released in
different regions of the gene expression state space under a steady flow field. Although we currently do not support
this, for vector field that changes over time, similar methods, for example, streakline, pathline, timeline, etc. can also
be used to visualize the evolution of single cell or cell populations.

In dynamo, we have three standard visual representations of vector fields, including the cell wise, grid quiver
plots and the streamline plot. Another intuitive way to visualize the structure of vector field is the so called line
integral convolution method or LIC (Cabral and Leedom 1993), which works by adding random black-and-white paint
sources on the vector field and letting the flowing particles on the vector field picking up some texture to ensure points
on the same streamline having similar intensity. We rely on the yt’s annotate_line_integral_convolution
function to visualize the LIC vector field reconstructed from dynamo.

dyn.pl.cell_wise_vectors(adata, color=colors, ncols=3)
dyn.pl.grid_vectors(adata, color=colors, ncols=3)
dyn.pl.stremline_plot(adata, color=colors, ncols=3)
dyn.pl.line_integral_conv(adata)

Note that colors here is a list or str that can be either the column name in .obs or gene names.

To visualize the topological structure of the reconstructed 2D vector fields, we provide the dyn.pl.topography
function in dynamo.

dyn.vf.VectorField(adata, basis='umap')
dyn.pl.topography(adata)

Plotting functions in dynamo are designed to be extremely flexible. For example, you can combine different types of
dynamo plots together (when you visualize only one item for each plot function)

import matplotlib.pyplot as plt
fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(12,
→˓10))
f1_axes
f1_axes[0, 0] = dyn.pl.cell_wise_vectors(adata, color='umap_ddhodge_potential',
→˓pointsize=0.1, alpha = 0.7, ax=f1_axes[0, 0], quiver_length=6, quiver_size=6, save_
→˓show_or_return='return')
f1_axes[0, 1] = dyn.pl.grid_vectors(adata, color='speed_umap', ax=f1_axes[0, 1],
→˓quiver_length=12, quiver_size=12, save_show_or_return='return')
f1_axes[1, 0] = dyn.pl.streamline_plot(adata, color='divergence_pca', ax=f1_axes[1,
→˓0], save_show_or_return='return')
f1_axes[1, 1] = dyn.pl.topography(adata, color='acceleration_umap', ax=f1_axes[1, 1],
→˓save_show_or_return='return')
plt.show()

The above creates a 2x2 plot that puts cell_wise_vectors, grid_vectors, streamline_plot and topography plots together.

2.1. 10 minutes to dynamo 11

https://github.com/yt-project/yt

dynamo, Release 0.95.2

2.1.5 Compatibility

Dynamo is fully compatible with velocyto, scanpy and scvelo. So you can use your loom or annadata object as input for
dynamo. The velocity vector samples estimated from either velocyto or scvelo can be also directly used to reconstruct
the functional form of vector field and to map the potential landscape in the entire expression space. Mapping Vector
Field of Single Cells

2.2 API

Import dynamo as:

import dynamo as dyn

2.2.1 Data IO

(See more at anndata-docs)

read(filename[, backed, as_sparse, . . .]) Read .h5ad-formatted hdf5 file.
read_h5ad(filename[, backed, as_sparse, . . .]) Read .h5ad-formatted hdf5 file.
read_loom(filename, *[, sparse, cleanup, . . .]) Read .loom-formatted hdf5 file.

dynamo.read

dynamo.read(filename, backed=None, *, as_sparse=(), as_sparse_fmt=<class
'scipy.sparse.csr.csr_matrix'>, chunk_size=6000)

Read .h5ad-formatted hdf5 file.

Parameters

• filename (Union[str, Path]) – File name of data file.

• backed (Union[Literal[‘r’, ‘r+’], bool, None]) – If ‘r’, load AnnData in backed
mode instead of fully loading it into memory (memory mode). If you want to modify backed
attributes of the AnnData object, you need to choose ‘r+’.

• as_sparse (Sequence[str]) – If an array was saved as dense, passing its name here
will read it as a sparse_matrix, by chunk of size chunk_size.

• as_sparse_fmt (Type[spmatrix]) – Sparse format class to read elements from
as_sparse in as.

• chunk_size (int) – Used only when loading sparse dataset that is stored as dense. Load-
ing iterates through chunks of the dataset of this row size until it reads the whole dataset.
Higher size means higher memory consumption and higher (to a point) loading speed.

Return type AnnData

12 Chapter 2. Contribution

https://anndata.readthedocs.io/en/latest/anndata.AnnData.html
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int

dynamo, Release 0.95.2

dynamo.read_h5ad

dynamo.read_h5ad(filename, backed=None, *, as_sparse=(), as_sparse_fmt=<class
'scipy.sparse.csr.csr_matrix'>, chunk_size=6000)

Read .h5ad-formatted hdf5 file.

Parameters

• filename (Union[str, Path]) – File name of data file.

• backed (Union[Literal[‘r’, ‘r+’], bool, None]) – If ‘r’, load AnnData in backed
mode instead of fully loading it into memory (memory mode). If you want to modify backed
attributes of the AnnData object, you need to choose ‘r+’.

• as_sparse (Sequence[str]) – If an array was saved as dense, passing its name here
will read it as a sparse_matrix, by chunk of size chunk_size.

• as_sparse_fmt (Type[spmatrix]) – Sparse format class to read elements from
as_sparse in as.

• chunk_size (int) – Used only when loading sparse dataset that is stored as dense. Load-
ing iterates through chunks of the dataset of this row size until it reads the whole dataset.
Higher size means higher memory consumption and higher (to a point) loading speed.

Return type AnnData

dynamo.read_loom

dynamo.read_loom(filename, *, sparse=True, cleanup=False, X_name='spliced', obs_names='CellID',
obsm_names=None, var_names='Gene', varm_names=None, dtype='float32',
obsm_mapping=mappingproxy({}), varm_mapping=mappingproxy({}), **kwargs)

Read .loom-formatted hdf5 file.

This reads the whole file into memory.

Beware that you have to explicitly state when you want to read the file as sparse data.

Parameters

• filename (PathLike) – The filename.

• sparse (bool) – Whether to read the data matrix as sparse.

• cleanup (bool) – Whether to collapse all obs/var fields that only store one unique value
into .uns[‘loom-.’].

• X_name (str) – Loompy key with which the data matrix X is initialized.

• obs_names (str) – Loompy key where the observation/cell names are stored.

• obsm_mapping (Mapping[str, Iterable[str]]) – Loompy keys which will be con-
structed into observation matrices

• var_names (str) – Loompy key where the variable/gene names are stored.

• varm_mapping (Mapping[str, Iterable[str]]) – Loompy keys which will be con-
structed into variable matrices

• **kwargs – Arguments to loompy.connect

2.2. API 13

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

dynamo, Release 0.95.2

Example

pbmc = anndata.read_loom(
"pbmc.loom",
sparse=True,
X_name="lognorm",
obs_names="cell_names",
var_names="gene_names",
obsm_mapping={

"X_umap": ["umap_1", "umap_2"]
}

)

Return type AnnData

2.2.2 Preprocessing (pp)

pp.recipe_monocle(adata[, normalized, . . .]) This function is partly based on Monocle R package
(https://github.com/cole-trapnell-lab/monocle3).

pp.cell_cycle_scores(adata[, layer, . . .]) Call cell cycle positions for cells within the population.

2.2.3 Estimation (est)

Note: Classes in est are internally to Tools. See our estimation classes here: estimation

2.2.4 Tools (tl)

kNN and moments of expressions

tl.neighbors(adata[, X_data, genes, basis, . . .]) Function to search nearest neighbors of the adata object.
tl.mnn(adata[, n_pca_components, . . .]) Function to calculate mutual nearest neighbor graph

across specific data layers.
tl.moments(adata[, genes, group, . . .]) Calculate kNN based first and second moments (includ-

ing uncentered covariance) for

Kinetic parameters and RNA/protein velocity

tl.dynamics(adata[, tkey, t_label_keys, . . .]) Inclusive model of expression dynamics considers splic-
ing, metabolic labeling and protein translation.

Dimension reduction

tl.reduceDimension(adata[, X_data, genes, . . .]) Compute a low dimension reduction projection of an
annodata object first with PCA, followed by non-linear
dimension reduction methods

continues on next page

14 Chapter 2. Contribution

https://github.com/cole-trapnell-lab/monocle3
./Class.html#estimation

dynamo, Release 0.95.2

Table 5 – continued from previous page
tl.DDRTree(X, maxIter, sigma, gamma[, eps, . . .]) This function is a pure Python implementation of the

DDRTree algorithm.
tl.psl(Y[, sG, dist, K, C, param_gamma, d, . . .]) This function is a pure Python implementation of the

PSL algorithm.

Clustering

tl.hdbscan(adata[, X_data, genes, layer, . . .]) Apply hdbscan to cluster cells in the space defined by
basis.

tl.cluster_field(adata[, basis, . . .]) Cluster cells based on vector field features.

Velocity projection

tl.cell_velocities(adata[, ekey, vkey, X, . . .]) Project high dimensional velocity vectors onto given
low dimensional embeddings, and/or compute cell tran-
sition probabilities.

tl.confident_cell_velocities(adata,
group, . . .)

Confidently compute transition probability and project
high dimension velocity vector to existing low dimen-
sion embeddings using progeintors and mature cell
groups priors.

Velocity metrics

tl.cell_wise_confidence(adata[, X_data,
. . .])

Calculate the cell-wise velocity confidence metric.

tl.gene_wise_confidence(adata, group[, . . .]) Diagnostic measure to identify genes contributed to
“wrong” directionality of the vector flow.

Markov chain

tl.generalized_diffusion_map(adata,
**kwargs)

Apply the diffusion map algorithm on the transition ma-
trix build from Itô kernel.

tl.stationary_distribution(adata[, method,
. . .])

Compute stationary distribution of cells using the tran-
sition matrix.

tl.diffusion(M[, P0, steps, backward]) Find the state distribution of a Markov process.
tl.expected_return_time(M[, backward]) Find the expected returning time.

Markers and differential expressions

tl.moran_i(adata[, X_data, genes, layer, . . .]) Identify genes with strong spatial autocorrelation with
Moran’s I test.

tl.find_group_markers(adata, group[, genes,
. . .])

Find marker genes for each group of cells based on gene
expression or velocity values as specified by the layer.

tl.two_groups_degs(adata, genes, layer, . . .) Find marker genes between two groups of cells based
on gene expression or velocity values as specified by
the layer.

tl.top_n_markers(adata[, with_moran_i, . . .]) Filter cluster deg (Moran’s I test) results and retrieve top
markers for each cluster.

continues on next page

2.2. API 15

dynamo, Release 0.95.2

Table 10 – continued from previous page
tl.glm_degs(adata[, X_data, genes, layer, . . .]) Differential genes expression tests using generalized

linear regressions.

Converter

tl.converter(data_in[, from_type, to_type, dir]) convert adata to loom object - we may save_fig to a temp
directory automatically - we may write a on-the-fly con-
verter which doesn’t involve saving and reading files

2.2.5 Vector field (vf)

Vector field reconstruction

Note: Vector field class is internally to vf.VectorField. See our vector field classes here: vector field

vf.SparseVFC(X, Y, Grid[, M, a, beta, ecr, . . .]) Apply sparseVFC (vector field consensus) algorithm to
learn a functional form of the vector field from random
samples with outlier on the entire space robustly and
efficiently.

vf.VectorField(adata[, basis, layer, dims, . . .]) Learn a function of high dimensional vector field from
sparse single cell samples in the entire space robustly.

Vector field topology

vf.topography(adata[, basis, layer, X, . . .]) Map the topography of the single cell vector field in
(first) two dimensions.

Beyond RNA velocity

vf.velocities(adata, init_cells[, . . .]) Calculate the velocities for any cell state with the recon-
structed vector field function.

vf.speed(adata[, basis, VecFld, method]) Calculate the speed for each cell with the reconstructed
vector field function.

vf.divergence(adata[, cell_idx, sampling, . . .]) Calculate divergence for each cell with the recon-
structed vector field function.

vf.curl(adata[, basis, vector_field_class]) Calculate Curl for each cell with the reconstructed vec-
tor field function.

vf.acceleration(adata[, basis, . . .]) Calculate acceleration for each cell with the recon-
structed vector field function.

vf.curvature(adata[, basis, . . .]) Calculate curvature for each cell with the reconstructed
vector field function.

vf.torsion(adata[, basis, vector_field_class]) Calculate torsion for each cell with the reconstructed
vector field function.

Beyond velocity vector field

16 Chapter 2. Contribution

./Class.html#vector-field

dynamo, Release 0.95.2

vf.cell_accelerations(adata[, vf_basis, . . .]) Compute RNA acceleration field via reconstructed vec-
tor field and project it to low dimensional embeddings.

vf.cell_curvatures(adata[, vf_basis, basis, . . .]) Compute RNA curvature field via reconstructed vector
field and project it to low dimensional embeddings.

Vector field ranking

vf.rank_speed_genes(adata[, group, genes,
vkey])

Rank gene’s absolute, positive, negative speed by differ-
ent cell groups.

vf.rank_divergence_genes(adata[, group,
. . .])

Rank gene’s absolute, positive, negative divergence by
different cell groups.

vf.rank_acceleration_genes(adata[, group,
. . .])

Rank gene’s absolute, positive, negative acceleration by
different cell groups.

vf.rank_curvature_genes(adata[, group, . . .]) Rank gene’s absolute, positive, negative curvature by
different cell groups.

Single cell potential: three approaches

vf.gen_fixed_points(func, auto_func, . . . [,
. . .])

Calculate the fixed points of (learned) vector field func-
tion .

vf.gen_gradient(dim, N, Function, . . .) Calculate the gradient of the (learned) vector field func-
tion for the least action path (LAP) symbolically

vf.IntGrad(points, Function, DiffusionMatrix, dt) Calculate the action of the path based on the (recon-
structed) vector field function and diffusion matrix (Eq.

vf.DiffusionMatrix(x) Diffusion matrix can be variable dependent
vf.action(n_points, tmax, point_start, . . .) It calculates the minimized action value given an intial

path, ODE, and diffusion matrix.
vf.Potential(adata[, DiffMat, method]) Function to map out the pseudo-potential landscape.
vf.path_integral(VecFnc, x_lim, y_lim, . . .) A deterministic map of Waddington’s epigenetic land-

scape for cell fate specification Sudin Bhattacharya,
Qiang Zhang and Melvin E.

vf.alignment(numPaths, numTimeSteps, . . . [,
. . .])

Align potential values so all path-potentials end up at
same global min and then generate potential surface
with interpolation on a grid.

vf.Wang_action(X_input, F, D, dim, N[, lamada_]) Calculate action by path integral by Wang’s method.
vf.Wang_LAP(F, n_points, point_start, point_end) Calculating least action path based methods from Jin

Wang and colleagues (http://www.pnas.org/cgi/doi/10.
1073/pnas.1017017108)

vf.transition_rate(X_input, F[, D, lambda_]) Calculate the rate to convert from one cell state to an-
other cell state by taking the optimal path.

vf.MFPT(X_input, F[, D, lambda_]) Calculate the MFPT (mean first passage time) to convert
from one cell state to another cell state by taking the
optimal path.

vf.Ao_pot_map(vecFunc, X[, D]) Mapping potential landscape with the algorithm devel-
oped by Ao method.

vf.solveQ(*args, **kw)

Stochastic processes

2.2. API 17

http://www.pnas.org/cgi/doi/10.1073/pnas.1017017108
http://www.pnas.org/cgi/doi/10.1073/pnas.1017017108

dynamo, Release 0.95.2

vf.diffusionMatrix(adata[, X_data, V_data,
. . .])

“Calculate the diffusion matrix from the estimated ve-
locity vector and the reconstructed vector field.

Vector field graph

vf.vfGraph(*args, **kwds) A class for manipulating the graph creating from the
transition matrix, built from the (reconstructed) vector
field.

2.2.6 Prediction (pd)

pd.fate(adata, init_cells[, init_states, . . .]) Predict the historical and future cell transcriptomic
states over arbitrary time scales.

pd.fate_bias(adata, group[, basis, inds, . . .]) Calculate the lineage (fate) bias of states whose trajec-
tory are predicted.

pd.state_graph(adata, group[, approx, . . .]) Estimate the transition probability between cell types
using method of vector field integrations.

dynamo.pd.fate

dynamo.pd.fate(adata, init_cells, init_states=None, basis=None, layer='X', dims=None, genes=None,
t_end=None, direction='both', interpolation_num=250, average=False, sam-
pling='arc_length', VecFld_true=None, inverse_transform=False, scale=1, cores=1,
**kwargs)

Predict the historical and future cell transcriptomic states over arbitrary time scales.

This is achieved by integrating the reconstructed vector field function from one or a set of initial cell
state(s). Note that this function is designed so that there is only one trajectory (based on averaged
cell states if multiple initial states are provided) will be returned. dyn.tl._fate can be used to calculate
multiple cell states.

Parameters

• adata (AnnData) – AnnData object that contains the reconstructed vector field function
in the uns attribute.

• init_cells (list (default: None)) – Cell name or indices of the initial cell states for the
historical or future cell state prediction with numerical integration. If the names in init_cells
are not find in the adata.obs_name, it will be treated as cell indices and must be integers.

• init_states (numpy.ndarray or None (default: None)) – Initial cell states for the his-
torical or future cell state prediction with numerical integration.

• basis (str or None (default: None)) – The embedding data to use for predicting cell fate.
If basis is either umap or pca, the reconstructed trajectory will be projected back to high
dimensional space via the inverse_transform function.

• layer (str or None (default: ‘X’)) – Which layer of the data will be used for predicting
cell fate with the reconstructed vector field function. The layer once provided, will override
the basis argument and then predicting cell fate in high dimensional space.

• dims (scalar, list or None (default: `None’)) – The dimensions that will be selected for fate
prediction.

18 Chapter 2. Contribution

dynamo, Release 0.95.2

• genes (list or None (default: None)) – The gene names whose gene expression will be used
for predicting cell fate. By default (when genes is set to None), the genes used for velocity
embedding (var.use_for_transition) will be used for vector field reconstruction. Note that
the genes to be used need to have velocity calculated and corresponds to those used in the
dyn.tl.VectorField function.

• t_end (float (default None)) – The length of the time period from which to predict cell
state forward or backward over time. This is used by the odeint function.

• direction (string (default: both)) – The direction to predict the cell fate. One of the
forward, backward or both string.

• interpolation_num (int (default: 100)) – The number of uniformly interpolated time
points.

• average (str or bool (default: False) {‘origin’, ‘trajectory’}) – The method to calculate
the average cell state at each time step, can be one of origin or trajectory. If origin used, the
average expression state from the init_cells will be calculated and the fate prediction is based
on this state. If trajectory used, the average expression states of all cells predicted from the
vector field function at each time point will be used. If average is False, no averaging will
be applied.

• sampling (str (default: arc_length)) – Methods to sample points along the integration
path, one of {‘arc_length’, ‘logspace’, ‘uniform_indices’}. If logspace, we will sample time
points linearly on log space. If uniform_indices, the sorted unique set of all time points from
all cell states’ fate prediction will be used and then evenly sampled up to interpolation_num
time points. If arc_length, we will sample the integration path with uniform arc length.

• VecFld_true (function) – The true ODE function, useful when the data is generated
through simulation. Replace VecFld arugment when this has been set.

• inverse_transform (bool (default: False)) – Whether to inverse transform the low
dimensional vector field prediction back to high dimensional space.

• scale (float (default: 1)) – The value that will be used to scale the predicted velocity value
from the reconstructed vector field function.

• cores (int (default: 1):) – Number of cores to calculate path integral for predicting cell
fate. If cores is set to be > 1, multiprocessing will be used to parallel the fate prediction.

• kwargs – Additional parameters that will be passed into the fate function.

Returns adata – AnnData object that is updated with the dictionary Fate (includes t and prediction
keys) in uns attribute.

Return type AnnData

dynamo.pd.fate_bias

dynamo.pd.fate_bias(adata, group, basis='umap', inds=None, speed_percentile=5,
dist_threshold=None, source_groups=None, metric='euclidean', met-
ric_kwds=None, cores=1, seed=19491001, **kwargs)

Calculate the lineage (fate) bias of states whose trajectory are predicted.

Fate bias is currently calculated as the percentage of points along the predicted cell fate trajectory whose distance
to their 0-th nearest neighbors on the data are close enough (determined by median 1-st nearest neighbors of
all observed cells and the dist_threshold) to any cell from each group specified by group key. The details is
described as following:

2.2. API 19

dynamo, Release 0.95.2

Cell fate predicted by our vector field method sometimes end up in regions that are not sampled with cells. We
thus developed a heuristic method to iteratively walk backward the integration path to assign cell fate. We first
identify the regions with small velocity in the tail of the integration path (determined by speed_percentile), then
we check whether the distance of 0-th nearest points on the observed data to all those points are far away from the
observed data (determined by dist_threshold). If they are not all close to data, we then walk backwards along the
trajectory by one time step until the distance of any currently visited integration path’s data points’ 0-th nearest
points to the observed cells is close enough. In order to calculate the cell fate probability, we diffuse one step
further of the identified nearest neighbors from the integration to identify more nearest observed cells, especially
those from terminal cell types in case nearby cells first identified are all close to some random progenitor cells.
Then we use group information of those observed cells to define the fate probability.

fate_bias calculate a confidence score for the calculated fate probability with a simple metric, defined as
1 − (𝑠𝑢𝑚(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 > 𝑑𝑖𝑠𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * 𝑚𝑒𝑑𝑖𝑎𝑛𝑑𝑖𝑠𝑡) + 𝑤𝑎𝑙𝑘𝑏𝑎𝑐𝑘𝑠𝑡𝑒𝑝𝑠)/(𝑙𝑒𝑛(𝑖𝑛𝑑𝑖𝑐𝑒𝑠) +
𝑤𝑎𝑙𝑘𝑏𝑎𝑐𝑘𝑠𝑡𝑒𝑝𝑠)

The distance is currently visited integration path’s data points’ 0-th nearest points to the observed cells. me-
dian_dist is median distance of their 1-st nearest cell distance of all observed cells. walk_back_steps is the steps
walked backward along the integration path until all currently visited integration points’s 0-th nearest points to
the observed cells satisfy the distance threshold. indices are the time indices of integration points that is regarded
as the regions with small velocity (note when walking backward, those corresponding points are not necessarily
have small velocity anymore).

Parameters

• adata (AnnData) – AnnData object that contains the predicted fate trajectories in the uns
attribute.

• group (str) – The column key that corresponds to the cell type or other group information
for quantifying the bias of cell state.

• basis (str or None (default: None)) – The embedding data space where cell fates were
predicted and cell fates bias will be quantified.

• list or float or None (default (inds) – The indices of the time steps that
will be used for calculating fate bias. If inds is None, the last a few steps of the fate prediction
based on the sink_speed_percentile will be use. If inds is the float (between 0 and 1), it will
be regarded as a percentage, and the last percentage of steps will be used for fate bias
calculation. Otherwise inds need to be a list of integers of the time steps.

• speed_percentile (float (default: 5)) – The percentile of speed that will be used to
determine the terminal cells (or sink region on the prediction path where speed is smaller
than this speed percentile).

• dist_threshold (float or None (default: None)) – A multiplier of the median nearest
cell distance on the embedding to determine cells that are outside the sampled domain of
cells. If the mean distance of identified “terminal cells” is above this number, we will look
backward along the trajectory (by minimize all indices by 1) until it finds cells satisfy this
threshold. By default it is set to be 1 to ensure only considering points that are very close to
observed data points.

• source_groups (list or None (default: None)) – The groups that corresponds to pro-
genitor groups. They has to have at least one intersection with the groups from the group
column. If group is not None, any identified “source_groups” cells that happen to be in those
groups will be ignored and the probability of cell fate of those cells will be reassigned to the
group that has the highest fate probability among other non source_groups group cells.

• metric (str or callable, default=’euclidean’) – The distance metric to use for the tree. The
default metric is , and with p=2 is equivalent to the standard Euclidean metric. See the docu-
mentation of DistanceMetric for a list of available metrics. If metric is “precomputed”,

20 Chapter 2. Contribution

dynamo, Release 0.95.2

X is assumed to be a distance matrix and must be square during fit. X may be a sparse graph,
in which case only “nonzero” elements may be considered neighbors.

• metric_kwds (dict, default=None) – Additional keyword arguments for the met-
ric function.

• cores (int (default: 1)) – The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors.

• seed (int (default 19491001)) – Random seed to ensure the reproducibility of each run.

• kwargs – Additional arguments that will be passed to each nearest neighbor search algo-
rithm.

Returns fate_bias – A DataFrame that stores the fate bias for each cell state (row) to each cell group
(column).

Return type pandas.DataFrame

dynamo.pd.state_graph

dynamo.pd.state_graph(adata, group, approx=True, basis='umap', layer=None, arc_sample=False,
sample_num=100)

Estimate the transition probability between cell types using method of vector field integrations.

Parameters

• adata (AnnData) – AnnData object that will be used to calculate a cell type (group)
transition graph.

• group (str) – The attribute to group cells (column names in the adata.obs).

• approx (bool (default: False)) – Whether to use streamplot to get the integration lines from
each cell.

• basis (str or None (default: umap)) – The embedding data to use for predicting cell fate.
If basis is either umap or pca, the reconstructed trajectory will be projected back to high
dimensional space via the inverse_transform function.

• layer (str or None (default: None)) – Which layer of the data will be used for predicting
cell fate with the reconstructed vector field function. The layer once provided, will override
the basis argument and then predicting cell fate in high dimensional space.

• sample_num (int (default: 100)) – The number of cells to sample in each group that will be
used for calculating the transitoin graph between cell groups. This is required for facilitating
the calculation.

Returns

• An updated adata object that is added with the group + ‘_graph’ key, including the transition
graph

• and the average transition time.

2.2. API 21

https://docs.python.org/3/library/stdtypes.html#dict

dynamo, Release 0.95.2

2.2.7 Plotting (pl)

Preprocessing

pl.basic_stats(adata[, group, figsize, . . .]) Plot the basic statics (nGenes, nCounts and pMito) of
each category of adata.

pl.show_fraction(adata[, genes, group, . . .]) Plot the fraction of each category of data used in the
velocity estimation.

pl.feature_genes(adata[, layer, mode, . . .]) Plot selected feature genes on top of the mean vs.
pl.variance_explained(adata[, threshold, . . .]) Plot the accumulative variance explained by the princi-

pal components.
pl.exp_by_groups(adata, genes[, layer, . . .]) Plot the (labeled) expression values of genes across dif-

ferent groups (time points).

Cell cycle staging

pl.cell_cycle_scores(adata[, cells, . . .]) Plot a heatmap of cells ordered by cell cycle position

Scatter base

pl.scatters(adata[, basis, x, y, color, . . .]) Plot an embedding as points.

Phase diagram: conventional scRNA-seq

pl.phase_portraits(adata, genes[, x, y, . . .]) Draw the phase portrait, expression values , velocity on
the low dimensional embedding.

Kinetic models: labeling based scRNA-seq

pl.dynamics(adata, vkey[, unit, . . .]) Plot the data and fitting of different metabolic labeling
experiments.

Kinetics

pl.kinetic_curves(adata, genes[, mode, . . .]) Plot the gene expression dynamics over time (pseudo-
time or inferred real time) as kinetic curves.

pl.kinetic_heatmap(adata, genes[, mode, . . .]) Plot the gene expression dynamics over time (pseudo-
time or inferred real time) in a heatmap.

pl.jacobian_kinetics(adata[, source_genes,
. . .])

Plot the gene expression dynamics over time (pseudo-
time or inferred real time) in a heatmap.

Dimension reduction

pl.pca(adata, *args, **kwargs) Scatter plot with pca basis.
pl.tsne(adata, *args, **kwargs) Scatter plot with tsne basis.
pl.umap(adata, *args, **kwargs) Scatter plot with umap basis.
pl.trimap(adata, *args, **kwargs) Scatter plot with trimap basis.

Neighbor graph

22 Chapter 2. Contribution

dynamo, Release 0.95.2

pl.nneighbors(adata[, x, y, color, basis, . . .]) Plot nearest neighbor graph of cells used to embed data
into low dimension space.

pl.state_graph(adata, group[, basis, x, y, . . .]) Plot a summarized cell type (state) transition graph.

Vector field plots: velocities and accelerations

pl.cell_wise_vectors(adata[, basis, x, y, . . .]) Plot the velocity or acceleration vector of each cell.
pl.grid_vectors(adata[, basis, x, y, color, . . .]) Plot the velocity or acceleration vector of each cell on a

grid.
pl.streamline_plot(adata[, basis, x, y, . . .]) Plot the velocity vector of each cell.
pl.line_integral_conv(adata[, basis, . . .]) Visualize vector field with quiver, streamline and line

integral convolution (LIC), using velocity estimates on
a grid from the associated data.

pl.plot_energy(adata[, basis, vecfld_dict, . . .]) Plot the energy and energy change rate over each opti-
mization iteration.

Vector field topology

pl.plot_flow_field(vecfld, x_range, y_range) Plots the flow field with line thickness proportional to
speed.

pl.plot_fixed_points(vecfld[, marker, . . .]) Plot fixed points stored in the VectorField2D class.
pl.plot_nullclines(vecfld[, lw, background,
. . .])

Plot nullclines stored in the VectorField2D class.

pl.plot_separatrix(vecfld, x_range, y_range, t) Plot separatrix on phase portrait.
pl.plot_traj(f, y0, t[, args, lw, . . .]) Plots a trajectory on a phase portrait.
pl.topography(adata[, basis, x, y, color, . . .]) Plot the streamline, fixed points (attractor / saddles),

nullcline, separatrices of a recovered dynamic system
for single cells.

Beyond RNA velocity

pl.speed(adata[, basis, color, frontier]) Scatter plot with cells colored by the estimated velocity
speed (and other information if provided).

pl.divergence(adata[, basis, color, cmap, . . .]) Scatter plot with cells colored by the estimated diver-
gence (and other information if provided).

pl.curl(adata[, basis, color, cmap, . . .]) Scatter plot with cells colored by the estimated curl (and
other information if provided).

pl.curvature(adata[, basis, color, frontier]) Scatter plot with cells colored by the estimated curva-
ture (and other information if provided).

pl.jacobian(adata[, source_genes, . . .]) Scatter plot with pca basis.
pl.jacobian_heatmap(adata, cell_idx[, . . .]) Plot the Jacobian matrix for each cell as a heatmap.

Potential landscape

pl.show_landscape(adata, Xgrid, Ygrid, Zgrid) Plot the quasi-potential landscape.

Cell fate

2.2. API 23

dynamo, Release 0.95.2

pl.fate_bias(adata, group[, basis, . . .]) Plot the lineage (fate) bias of cells states whose vector
field trajectories are predicted.

Save figures

pl.save_fig([path, prefix, dpi, ext, . . .]) Save a figure from pyplot.

2.2.8 Moive (mv)

Note: animation class is internally to mv.animate_fates. See our animation classes here: animation

mv.animate_fates(adata[, basis, dims, . . .]) Animating cell fate commitment prediction via recon-
structed vector field function.

dynamo.mv.animate_fates

dynamo.mv.animate_fates(adata, basis='umap', dims=None, n_steps=100, cell_states=None,
color='ntr', fig=None, ax=None, logspace=False,
max_time=None, frame_color=None, interval=100, blit=True,
save_show_or_return='show', save_kwargs={}, **kwargs)

Animating cell fate commitment prediction via reconstructed vector field function.

This class creates necessary components to produce an animation that describes the exact speed of a set of cells
at each time point, its movement in gene expression and the long range trajectory predicted by the reconstructed
vector field. Thus it provides intuitive visual understanding of the RNA velocity, speed, acceleration, and cell
fate commitment in action.

This function is originally inspired by https://tonysyu.github.io/animating-particles-in-a-flow.html and relies on
animation module from matplotlib. Note that you may need to install imagemagick in order to properly show or
save the animation. See for example, http://louistiao.me/posts/notebooks/save-matplotlib-animations-as-gifs/
for more details.

Parameters

• adata (AnnData) – AnnData object that already went through the fate prediction.

• basis (str or None (default: None)) – The embedding data to use for predicting cell fate.
If basis is either umap or pca, the reconstructed trajectory will be projected back to high
dimensional space via the inverse_transform function. space.

• dims (list or None (default: `None’)) – The dimensions of low embedding space where
cells will be drawn and it should corresponds to the space fate prediction take place.

• n_steps (int (default: 100)) – The number of times steps (frames) fate prediction will
take.

• cell_states (int, list or None (default: None)) – The number of cells state that will be
randomly selected (if int), the indices of the cells states (if list) or all cell states which fate
prediction executed (if None)

• fig (matplotlib.figure.Figure or None (default: None)) – The figure that will contain both
the background and animated components.

24 Chapter 2. Contribution

./Class.html#movie
https://tonysyu.github.io/animating-particles-in-a-flow.html
http://louistiao.me/posts/notebooks/save-matplotlib-animations-as-gifs/

dynamo, Release 0.95.2

• ax (matplotlib.Axis (optional, default None)) – The matplotlib axes object that will be used
as background plot of the vector field animation. If ax is None, topography(adata, ba-
sis=basis, color=color, ax=ax, save_show_or_return=’return’) will be used to create an
axes.

• logspace (bool (default: False)) – Whether or to sample time points linearly on log space.
If not, the sorted unique set of all time points from all cell states’ fate prediction will be used
and then evenly sampled up to n_steps time points.

• interval (float (default: 200)) – Delay between frames in milliseconds.

• blit (bool (default: False)) – Whether blitting is used to optimize drawing. Note: when
using blitting, any animated artists will be drawn according to their zorder; however, they
will be drawn on top of any previous artists, regardless of their zorder.

• save_show_or_return (str {‘save’, ‘show’, ‘return’} (default: save)) – Whether to
save, show or return the figure. By default a gif will be used.

• save_kwargs (dict (default: {})) – A dictionary that will passed to the anim.save.
By default it is an empty dictionary and the save_fig function will use the {“filename”:
‘fate_ani.gif’, “writer”: “imagemagick”} as its parameters. Otherwise you can provide a
dictionary that properly modify those keys according to your needs. see https://matplotlib.
org/api/_as_gen/matplotlib.animation.Animation.save.html for more details.

• kwargs – Additional arguments passed to animation.FuncAnimation.

Returns

Return type Nothing but produce an animation that will be embedded to jupyter notebook or saved
to disk.

>>> from matplotlib import animation
>>> progenitor = adata.obs_names[adata.obs.clusters == 'cluster_1']
>>> fate_progenitor = progenitor
>>> info_genes = adata.var_names[adata.var.use_for_transition]
>>> dyn.pd.fate(adata, basis='umap', init_cells=fate_progenitor, interpolation_
→˓num=100, direction='forward',
... inverse_transform=False, average=False)
>>> dyn.mv.animate_fates(adata)

See also:: StreamFuncAnim()

2.2.9 Simulation (sim)

Simple ODE vector field simulation

sim.two_genes_motif(x[, t, a1, a2, b1, b2, . . .]) The ODE model for the famous Pu.1-Gata.1 like net-
work motif with self-activation and mutual inhibition.

sim.neurogenesis(x[, t, mature_mu, n, k, a, . . .]) The ODE model for the neurogenesis system that used
in benchmarking Monocle 2, Scribe and dynamo (here),
original from Xiaojie Qiu, et.

sim.toggle(ab[, t, beta, gamma, n]) Right hand side (rhs) for toggle ODEs.
sim.Ying_model(x[, t]) network used in the potential landscape paper from

Ying, et.

2.2. API 25

https://matplotlib.org/api/_as_gen/matplotlib.animation.Animation.save.html
https://matplotlib.org/api/_as_gen/matplotlib.animation.Animation.save.html

dynamo, Release 0.95.2

Gillespie simulation

sim.Gillespie([a, b, la, aa, ai, si, be, . . .]) A simulator of RNA dynamics that includes RNA burst-
ing, transcription, metabolic labeling, splicing, tran-
scription, RNA/protein degradation

sim.Simulator([motif, clip]) Simulate the gene expression dynamics via determinis-
tic ODE model

sim.state_space_sampler(ode, dim[, clip, . . .]) Sample N points from the dim dimension gene expres-
sion space while restricting the values to be between
min_val and max_val.

sim.evaluate(reference, prediction[, metric]) Function to evaluate the vector field related reference
quantities vs.

2.2.10 External (ext)

ext.ddhodge(adata[, X_data, layer, basis, . . .]) Modeling Latent Flow Structure using Hodge Decom-
position based on the creation of sparse diffusion graph
from the reconstructed vector field function.

ext.scribe(adata[, genes, TFs, Targets, . . .]) Apply Scribe to calculate causal network from
spliced/unspliced, metabolic labeling based and other
“real” time series datasets.

ext.mutual_inform(adata, genes, layer_x,
layer_y)

Calculate mutual information (as well as pearson corre-
lation) of genes between two different layers.

ext.scifate_glmnet(adata[, . . .]) Reconstruction of regulatory network (Cao, et. al, Na-
ture Biotechnology, 2020) from TFs to other target

dynamo.ext.ddhodge

dynamo.ext.ddhodge(adata, X_data=None, layer=None, basis='pca', n=30, VecFld=None, ad-
jmethod='graphize_vecfld', distance_free=False, n_downsamples=5000,
up_sampling=True, sampling_method='velocity', seed=19491001, enforce=False,
cores=1)

Modeling Latent Flow Structure using Hodge Decomposition based on the creation of sparse diffusion graph
from the reconstructed vector field function. This method is relevant to the curl-free/divergence-free vector field
reconstruction.

Parameters

• adata (AnnData) – an Annodata object.

• X_data (np.ndarray (default: None)) – The user supplied expression (embedding) data
that will be used for graph hodege decomposition directly.

• layer (str or None (default: None)) – Which layer of the data will be used for graph Hodge
decomposition.

• basis (str (default: pca)) – Which basis of the data will be used for graph Hodge decom-
position.

• n (int (default: 10)) – Number of nearest neighbors when the nearest neighbor graph is not
included.

• VecFld (dictionary or None (default: None)) – The reconstructed vector field function.

26 Chapter 2. Contribution

dynamo, Release 0.95.2

• adjmethod (str (default: graphize_vecfld)) – The method to build the ajacency matrix that
will be used to create the sparse diffusion graph, can be either “naive” or “graphize_vecfld”.
If “naive” used, the transition_matrix that created during vector field projection will be used;
if “graphize_vecfld” used, a method that guarantees the preservance of divergence will be
used.

• n_downsamples (int (default: 5000)) – Number of cells to downsample to if the cell
number is large than this value. Three downsampling methods are available, see sam-
pling_method.

• up_sampling (bool (default: True)) – Whether to assign calculated potential, curl and
divergence to cells not sampled based on values from their nearest sampled cells.

• sampling_method (str (default: random)) – Methods to downsample datasets to fa-
cilitate calculation. Can be one of {random, velocity, trn}, each corresponds to random
sampling, velocity magnitude based and topology representing network based sampling.

• seed (int or 1-d array_like, optional (default: 0)) – Seed for RandomState. Must be con-
vertible to 32 bit unsigned integers. Used in sampling control points. Default is to be 0 for
ensure consistency between different runs.

• enforce (bool (default: False)) – Whether to enforce the calculation of adjacency matrix
for estimating potential, curl, divergence for each cell.

• cores (int (default: 1):) – Number of cores to run the graphize_vecfld function. If cores is
set to be > 1, multiprocessing will be used to parallel the graphize_vecfld calculation.

Returns

adata –

AnnData object that is updated with the ddhodge key in the obsp attribute which to adjacency matrix that
corresponds to the sparse diffusion graph. Two columns potential and divergence corre-
sponds to the potential and divergence for each cell will also be added.

Return type AnnData

dynamo.ext.scribe

dynamo.ext.scribe(adata, genes=None, TFs=None, Targets=None,
gene_filter_rate=0.1, cell_filter_UMI=10000, mo-
tif_ref='https://www.dropbox.com/s/s8em539ojl55kgf/motifAnnotations_hgnc.csv?dl=1',
nt_layers=['X_new', 'X_total'], normalize=True, do_CLR=True,
drop_zero_cells=True, TF_link_ENCODE_ref='https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_link_ENCODE.csv?dl=1')

Apply Scribe to calculate causal network from spliced/unspliced, metabolic labeling based and other “real”
time series datasets. Note that this function can be applied to both of the metabolic labeling based single-cell
assays with newly synthesized and total RNA as well as the regular single cell assays with both the unspliced
and spliced transcripts. Furthermore, you can also replace the either the new or unspliced RNA with dynamo
estimated cell-wise velocity, transcription, splicing and degradation rates for each gene (similarly, replacing the
expression values of transcription factors with RNA binding, ribosome, epigenetics or epitranscriptomic factors,
etc.) to infer the total regulatory effects, transcription, splicing and post-transcriptional regulation of different
factors.

Parameters

• adata (AnnData.) – adata object that includes both newly synthesized and total gene
expression of cells. Alternatively, the object should include both unspliced and spliced gene
expression of cells.

2.2. API 27

dynamo, Release 0.95.2

• genes (List (default: None)) – The list of gene names that will be used for casual network
inference. By default, it is None and thus will use all genes.

• TFs (List or None (default: None)) – The list of transcription factors that will be used for
casual network inference. When it is None gene list included in the file linked by motif_ref
will be used.

• Targets (List or None (default: None)) – The list of target genes that will be used for ca-
sual network inference. When it is None gene list not included in the file linked by motif_ref
will be used.

• gene_filter_rate (float (default: 0.1)) – minimum percentage of expressed cells for
gene filtering.

• cell_filter_UMI (int (default: 10000)) – minimum number of UMIs for cell filtering.

• motif_ref (str (default: ‘https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_
link_ENCODE.csv?dl=1’)) – It provides the list of TFs gene names and is used to parse
the data to get the list of TFs and Targets for the causal network inference from those TFs to
Targets. But currently the motif based filtering is not implemented. By default it is a dropbox
link that store the data from us. Other motif reference can bed downloaded from RcisTarget:
https://resources.aertslab.org/cistarget/. For human motif matrix, it can be downloaded from
June’s shared folder: https://shendure-web.gs.washington.edu/content/members/cao1025/
public/nobackup/sci_fate/data/hg19-tss-centered-10kb-7species.mc9nr.feather

• nt_layers (List (Default: [‘X_new’, ‘X_total’])) – The two keys for layers that will
be used for the network inference. Note that the layers can be changed flexibly. See the
description of this function above. The first key corresponds to the transcriptome of the next
time point, for example unspliced RNAs (or estimated velocitym, see Fig 6 of the Scribe
preprint: https://www.biorxiv.org/content/10.1101/426981v1) from RNA velocity, old RNA
from scSLAM-seq data, etc. The second key corresponds to the transcriptome of the initial
time point, for example spliced RNAs from RNA velocity, old RNA from scSLAM-seq data.

• drop_zero_cells (bool (Default: False)) – Whether to drop cells that with zero expres-
sion for either the potential regulator or potential target. This can signify the relationship
between potential regulators and targets, speed up the calculation, but at the risk of ignoring
strong inhibition effects from certain regulators to targets.

• do_CLR (bool (Default: True)) – Whether to perform context likelihood relatedness analy-
sis on the reconstructed causal network

• TF_link_ENCODE_ref (str (default: ‘https://www.dropbox.com/s/s8em539ojl55kgf/
motifAnnotations_hgnc.csv?dl=1’)) – The path to the TF chip-seq data. By default it is
a dropbox link from us that stores the data. Other data can be downloaded from: https:
//amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets.

Returns

Return type An updated adata object with a new key causal_net in .uns attribute, which stores the
inferred causal network.

28 Chapter 2. Contribution

https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_link_ENCODE.csv?dl=1
https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_link_ENCODE.csv?dl=1
https://resources.aertslab.org/cistarget/
https://shendure-web.gs.washington.edu/content/members/cao1025/public/nobackup/sci_fate/data/hg19-tss-centered-10kb-7species.mc9nr.feather
https://shendure-web.gs.washington.edu/content/members/cao1025/public/nobackup/sci_fate/data/hg19-tss-centered-10kb-7species.mc9nr.feather
https://www.biorxiv.org/content/10.1101/426981v1
https://www.dropbox.com/s/s8em539ojl55kgf/motifAnnotations_hgnc.csv?dl=1
https://www.dropbox.com/s/s8em539ojl55kgf/motifAnnotations_hgnc.csv?dl=1
https://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
https://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets

dynamo, Release 0.95.2

dynamo.ext.mutual_inform

dynamo.ext.mutual_inform(adata, genes, layer_x, layer_y, cores=1)
Calculate mutual information (as well as pearson correlation) of genes between two different layers.

Parameters

• adata (AnnData.) – adata object that will be used for mutual information calculation.

• genes (List (default: None)) – Gene names from the adata object that will be used for
mutual information calculation.

• layer_x – The first key of the layer from the adata object that will be used for mutual
information calculation.

• layer_y – The second key of the layer from the adata object that will be used for mutual
information calculation.

• cores (int (default: 1)) – Number of cores to run the MI calculation. If cores is set to be >
1, multiprocessing will be used to parallel the calculation.

Returns

• An updated adata object that updated with a new columns (mi, pearson) in .var contains the
mutual information

• of input genes.

dynamo.ext.scifate_glmnet

dynamo.ext.scifate_glmnet(adata, gene_filter_rate=0.1, cell_filter_UMI=10000,
core_n_lasso=1, core_n_filtering=1, mo-
tif_ref='https://www.dropbox.com/s/s8em539ojl55kgf/motifAnnotations_hgnc.csv?dl=1',
TF_link_ENCODE_ref='https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_link_ENCODE.csv?dl=1',
nt_layers=['X_new', 'X_total'])

Reconstruction of regulatory network (Cao, et. al, Nature Biotechnology, 2020) from TFs to other target
genes via LASSO regression between the total expression of known transcription factors and the newly
synthesized RNA of potential targets. The inferred regulatory relationships between TF and targets
are further filtered based on evidence of promoter motifs (not implemented currently) and the EN-
CODE chip-seq peaks. The python wrapper for the glmnet FORTRON code, glm-python (https:
//github.com/bbalasub1/glmnet_python) was used. More details on lasso regression with glm-python can
be found here (https://github.com/bbalasub1/glmnet_python/blob/master/test/glmnet_examples.ipynb).
Note that this function can be applied to both of the metabolic labeling single-cell assays with newly
synthesized and total RNA as well as the regular single cell assays with both the unspliced and spliced
transcripts. Furthermore, you can also replace the either the new or unspliced RNA with dynamo estimated
cell-wise velocity, transcription, splicing and degradation rates for each gene (similarly, replacing the
expression values of transcription factors with RNA binding, ribosome, epigenetics or epitranscriptomic
factors, etc.) to infer the tottal regulatory effects, transcription, splicing and post-transcriptional regulation
of different factors. In addition, this approach will be fully integrated with Scribe (Qiu, et. al, 2020) which
employs restricted directed information to determine causality by estimating the strength of information
transferred from a potential regulator to its downstream target. In contrast of lasso regression, Scribe can
learn both linear and non-linear causality in deterministic and stochastic systems. It also incorporates
rigorous procedures to alleviate sampling bias and builds upon novel estimators and regularization
techniques to facilitate inference of large-scale causal networks.

Parameters

2.2. API 29

https://github.com/bbalasub1/glmnet_python
https://github.com/bbalasub1/glmnet_python
https://github.com/bbalasub1/glmnet_python/blob/master/test/glmnet_examples.ipynb

dynamo, Release 0.95.2

• adata (AnnData.) – adata object that includes both newly synthesized and total gene
expression of cells. Alternatively, the object should include both unspliced and spliced gene
expression of cells.

• gene_filter_rate (float (default: 0.1)) – minimum percentage of expressed cells for
gene filtering.

• cell_filter_UMI (int (default: 10000)) – minimum number of UMIs for cell filtering.

• core_n_lasso (int (default: 1)) – number of cores for lasso regression in linkage anal-
ysis. By default, it is 1 and parallel is turned off. Parallel computing can significantly
speed up the computation process, especially for datasets involve many cells or genes. But
for smaller datasets or genes, it could result in a reduction in speed due to the additional
overhead. User discretion is advised.

• core_n_filtering (int (default: 1)) – number of cores for filtering TF-gene links. Not
used currently.

• motif_ref (str (default: ‘https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_
link_ENCODE.csv?dl=1’)) – The path to the TF binding motif data as described above.
It provides the list of TFs gene names and is used to process adata object to generate the TF
expression and target new expression matrix for glmnet based TF-target synthesis rate link-
age analysis. But currently it is not used for motif based filtering. By default it is a dropbox
link that store the data from us. Other motif reference can bed downloaded from RcisTarget:
https://resources.aertslab.org/cistarget/. For human motif matrix, it can be downloaded from
June’s shared folder: https://shendure-web.gs.washington.edu/content/members/cao1025/
public/nobackup/sci_fate/data/hg19-tss-centered-10kb-7species.mc9nr.feather

• TF_link_ENCODE_ref (str (default: ‘https://www.dropbox.com/s/s8em539ojl55kgf/
motifAnnotations_hgnc.csv?dl=1’)) – The path to the TF chip-seq data. By default it is
a dropbox link from us that stores the data. Other data can be downloaded from: https:
//amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets.

• nt_layers (list([str, str]) (default: [‘X_new’, ‘X_total’])) – The layers that will be used
for the network inference. Note that the layers can be changed flexibly. See the description
of this function above.

• that if your internet connection is slow, we recommend to
download the motif_ref and TF_link_ENCODE_ref and (Note) –

• those two arguments with the local paths where the
downloaded datasets are saved. (supplies) –

Returns

• An updated adata object with a new key scifate in .uns attribute, which stores the raw lasso
regression results

• and the filter results after applying the Fisher exact test of the ChIP-seq peaks.

30 Chapter 2. Contribution

https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_link_ENCODE.csv?dl=1
https://www.dropbox.com/s/bjuope41pte7mf4/df_gene_TF_link_ENCODE.csv?dl=1
https://resources.aertslab.org/cistarget/
https://shendure-web.gs.washington.edu/content/members/cao1025/public/nobackup/sci_fate/data/hg19-tss-centered-10kb-7species.mc9nr.feather
https://shendure-web.gs.washington.edu/content/members/cao1025/public/nobackup/sci_fate/data/hg19-tss-centered-10kb-7species.mc9nr.feather
https://www.dropbox.com/s/s8em539ojl55kgf/motifAnnotations_hgnc.csv?dl=1
https://www.dropbox.com/s/s8em539ojl55kgf/motifAnnotations_hgnc.csv?dl=1
https://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
https://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets

dynamo, Release 0.95.2

2.2.11 Utilities

Package versions

get_all_dependencies_version([display]) Adapted from answer 2 in https://
stackoverflow.com/questions/40428931/
package-for-listing-version-of-packages-used-in-a-jupyter-notebook

dynamo.get_all_dependencies_version

dynamo.get_all_dependencies_version(display=True)
Adapted from answer 2 in https://stackoverflow.com/questions/40428931/
package-for-listing-version-of-packages-used-in-a-jupyter-notebook

Clean up adata

cleanup(adata[, del_prediction]) clean up adata before saving it to a file

dynamo.cleanup

dynamo.cleanup(adata, del_prediction=False)
clean up adata before saving it to a file

Figures configuration

configuration.set_figure_params([dynamo,
. . .])

Set resolution/size, styling and format of figures.

configuration.set_pub_style([scaler]) formatting helper function that can be used to save pub-
lishable figures

dynamo.configuration.set_figure_params

dynamo.configuration.set_figure_params(dynamo=True, background='white', fontsize=8,
figsize=6, 4, dpi=None, dpi_save=None,
frameon=None, vector_friendly=True,
color_map=None, format='pdf', transparent=False,
ipython_format='png2x')

Set resolution/size, styling and format of figures. This function is adapted from: https://github.com/theislab/
scanpy/blob/f539870d7484675876281eb1c475595bf4a69bdb/scanpy/_settings.py

Parameters

• dynamo (bool (default: True)) – Init default values for matplotlib.rcParams suited
for dynamo.

• background (str (default: white)) – The background color of the plot. By default we use
the white ground which is suitable for producing figures for publication. Setting it to black
background will be great for presentation.

• fontsize ([float, float] or None (default: 6)) –

• figsize ((float, float) (default: (6.5, 5))) – Width and height for default figure size.

2.2. API 31

https://stackoverflow.com/questions/40428931/package-for-listing-version-of-packages-used-in-a-jupyter-notebook
https://stackoverflow.com/questions/40428931/package-for-listing-version-of-packages-used-in-a-jupyter-notebook
https://stackoverflow.com/questions/40428931/package-for-listing-version-of-packages-used-in-a-jupyter-notebook
https://stackoverflow.com/questions/40428931/package-for-listing-version-of-packages-used-in-a-jupyter-notebook
https://stackoverflow.com/questions/40428931/package-for-listing-version-of-packages-used-in-a-jupyter-notebook
https://github.com/theislab/scanpy/blob/f539870d7484675876281eb1c475595bf4a69bdb/scanpy/_settings.py
https://github.com/theislab/scanpy/blob/f539870d7484675876281eb1c475595bf4a69bdb/scanpy/_settings.py

dynamo, Release 0.95.2

• dpi (int or None (default: None)) – Resolution of rendered figures - this influences the size
of figures in notebooks.

• dpi_save (int or None (default: None)) – Resolution of saved figures. This should typi-
cally be higher to achieve publication quality.

• frameon (bool or None (default: None)) – Add frames and axes labels to scatter plots.

• vector_friendly (bool (default: True)) – Plot scatter plots using png backend even
when exporting as pdf or svg.

• color_map (str (default: None)) – Convenience method for setting the default color map.

• format ({'png', 'pdf', 'svg', etc.} (default: 'pdf')) – This sets
the default format for saving figures: file_format_figs.

• transparent (bool (default: False)) – Save figures with transparent back ground. Sets
rcParams[‘savefig.transparent’].

• ipython_format (list of str (default: ‘png2x’)) – Only concerns the notebook/IPython
environment; see IPython.core.display.set_matplotlib_formats for more details.

dynamo.configuration.set_pub_style

dynamo.configuration.set_pub_style(scaler=1)
formatting helper function that can be used to save publishable figures

2.3 Class

2.3.1 Estimation

Conventional scRNA-seq (est.csc)

class csc.ss_estimation(U=None, Ul=None, S=None, Sl=None, P=None, US=None, S2=None,
conn=None, t=None, ind_for_proteins=None, model='stochastic',
est_method='gmm', experiment_type='deg', assumption_mRNA=None,
assumption_protein='ss', concat_data=True, cores=1, **kwargs)

The class that estimates parameters with input data.

Parameters

• U (ndarray or sparse csr_matrix) – A matrix of unspliced mRNA count.

• Ul (ndarray or sparse csr_matrix) – A matrix of unspliced, labeled mRNA count.

• S (ndarray or sparse csr_matrix) – A matrix of spliced mRNA count.

• Sl (ndarray or sparse csr_matrix) – A matrix of spliced, labeled mRNA count.

• P (ndarray or sparse csr_matrix) – A matrix of protein count.

• US (ndarray or sparse csr_matrix) – A matrix of second moment of unspliced/spliced
gene expression count for conventional or NTR velocity.

• S2 (ndarray or sparse csr_matrix) – A matrix of second moment of spliced gene expres-
sion count for conventional or NTR velocity.

• conn (ndarray or sparse csr_matrix) – The connectivity matrix that can be used to cal-
culate first /second moment of the data.

32 Chapter 2. Contribution

dynamo, Release 0.95.2

• t (ss_estimation) – A vector of time points.

• ind_for_proteins (ndarray) – A 1-D vector of the indices in the U, Ul, S, Sl layers
that corresponds to the row name in the protein or X_protein key of .obsm attribute.

• experiment_type (str) – labelling experiment type. Available options are: (1) ‘deg’:
degradation experiment; (2) ‘kin’: synthesis experiment; (3) ‘one-shot’: one-shot kinetic
experiment; (4) ‘mix_std_stm’: a mixed steady state and stimulation labeling experiment.

• assumption_mRNA (str) – Parameter estimation assumption for mRNA. Available op-
tions are: (1) ‘ss’: pseudo steady state; (2) None: kinetic data with no assumption.

• assumption_protein (str) – Parameter estimation assumption for protein. Available
options are: (1) ‘ss’: pseudo steady state;

• concat_data (bool (default: True)) – Whether to concatenate data

• cores (int (default: 1)) – Number of cores to run the estimation. If cores is set to be > 1,
multiprocessing will be used to parallel the parameter estimation.

Returns

• t (ss_estimation) – A vector of time points.

• data (dict) – A dictionary with uu, ul, su, sl, p as its keys.

• extyp (str) – labelling experiment type.

• asspt_mRNA (str) – Parameter estimation assumption for mRNA.

• asspt_prot (str) – Parameter estimation assumption for protein.

• parameters (dict) –

A dictionary with alpha, beta, gamma, eta, delta as its keys. alpha: transcription rate
beta: RNA splicing rate gamma: spliced mRNA degradation rate eta: translation rate
delta: protein degradation rate

concatenate_data()
Concatenate available data into a single matrix.

See “concat_time_series_matrices” for details.

fit(intercept=False, perc_left=None, perc_right=5, clusters=None, one_shot_method='combined')
Fit the input data to estimate all or a subset of the parameters

Parameters

• intercept (bool) – If using steady state assumption for fitting, then: True – the linear
regression is performed with an unfixed intercept; False – the linear regression is per-
formed with a fixed zero intercept.

• perc_left (float (default: 5)) – The percentage of samples included in the linear re-
gression in the left tail. If set to None, then all the samples are included.

• perc_right (float (default: 5)) – The percentage of samples included in the linear
regression in the right tail. If set to None, then all the samples are included.

• clusters (list) – A list of n clusters, each element is a list of indices of the samples
which belong to this cluster.

fit_alpha_oneshot(t, U, beta, clusters=None)
Estimate alpha with the one-shot data.

Parameters

2.3. Class 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• t (float) – labelling duration.

• U (ndarray) – A matrix of unspliced mRNA counts. Dimension: genes x cells.

• beta (ndarray) – A vector of betas for all the genes.

• clusters (list) – A list of n clusters, each element is a list of indices of the samples
which belong to this cluster.

Returns alpha – A numpy array with the dimension of n_genes x clusters.

Return type ndarray

fit_beta_gamma_lsq(t, U, S)
Estimate beta and gamma with the degradation data using the least squares method.

Parameters

• t (ndarray) – A vector of time points.

• U (ndarray) – A matrix of unspliced mRNA counts. Dimension: genes x cells.

• S (ndarray) – A matrix of spliced mRNA counts. Dimension: genes x cells.

Returns

• beta (ndarray) – A vector of betas for all the genes.

• gamma (ndarray) – A vector of gammas for all the genes.

• u0 (float) – Initial value of u.

• s0 (float) – Initial value of s.

fit_gamma_nosplicing_lsq(t, L)
Estimate gamma with the degradation data using the least squares method when there is no splicing data.

Parameters

• t (ndarray) – A vector of time points.

• L (ndarray) – A matrix of labeled mRNA counts. Dimension: genes x cells.

Returns

• gamma (ndarray) – A vector of gammas for all the genes.

• l0 (float) – The estimated value for the initial spliced, labeled mRNA count.

fit_gamma_steady_state(u, s, intercept=True, perc_left=None, perc_right=5, normalize=True)
Estimate gamma using linear regression based on the steady state assumption.

Parameters

• u (ndarray or sparse csr_matrix) – A matrix of unspliced mRNA counts. Dimension:
genes x cells.

• s (ndarray or sparse csr_matrix) – A matrix of spliced mRNA counts. Dimension:
genes x cells.

• intercept (bool) – If using steady state assumption for fitting, then: True – the lin-
ear regression is performed with an unfixed intercept; False – the linear regresssion is
performed with a fixed zero intercept.

• perc_left (float) – The percentage of samples included in the linear regression in
the left tail. If set to None, then all the left samples are excluded.

34 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

dynamo, Release 0.95.2

• perc_right (float) – The percentage of samples included in the linear regression in
the right tail. If set to None, then all the samples are included.

• normalize (bool) – Whether to first normalize the

Returns

• k (float) – The slope of the linear regression model, which is gamma under the steady state
assumption.

• b (float) – The intercept of the linear regression model.

• r2 (float) – Coefficient of determination or r square for the extreme data points.

• r2 (float) – Coefficient of determination or r square for the extreme data points.

• all_r2 (float) – Coefficient of determination or r square for all data points.

fit_gamma_stochastic(est_method, u, s, us, ss, perc_left=None, perc_right=5, normalize=True)
Estimate gamma using GMM (generalized method of moments) or negbin distrubtion based on the steady
state assumption.

Parameters

• est_method (str {gmm, negbin} The estimation method to be used when using the
stochastic model.) –

– Available options when the model is ‘ss’ include:

(2) ‘gmm’: The new generalized methods of moments from us that is based on master
equations, similar to the “moment” model in the excellent scVelo package; (3) ‘negbin’:
The new method from us that models steady state RNA expression as a negative binomial
distribution, also built upon on master equations. Note that all those methods require using
extreme data points (except negbin, which use all data points) for estimation. Extreme data
points are defined as the data from cells whose expression of unspliced / spliced or new /
total RNA, etc. are in the top or bottom, 5%, for example. linear_regression only considers
the mean of RNA species (based on the deterministic ordinary different equations) while
moment based methods (gmm, negbin) considers both first moment (mean) and second
moment (uncentered variance) of RNA species (based on the stochastic master equations).
The above method are all (generalized) linear regression based method. In order to return
estimated parameters (including RNA half-life), it additionally returns R-squared (either
just for extreme data points or all data points) as well as the log-likelihood of the fitting,
which will be used for transition matrix and velocity embedding. All est_method uses
least square to estimate optimal parameters with latin cubic sampler for initial sampling.

• u (ndarray or sparse csr_matrix) – A matrix of unspliced mRNA counts. Dimension:
genes x cells.

• s (ndarray or sparse csr_matrix) – A matrix of spliced mRNA counts. Dimension:
genes x cells.

• us (ndarray or sparse csr_matrix) – A matrix of unspliced mRNA counts. Dimension:
genes x cells.

• ss (ndarray or sparse csr_matrix) – A matrix of spliced mRNA counts. Dimension:
genes x cells.

• perc_left (float) – The percentage of samples included in the linear regression in
the left tail. If set to None, then all the left samples are excluded.

• perc_right (float) – The percentage of samples included in the linear regression in
the right tail. If set to None, then all the samples are included.

2.3. Class 35

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dynamo, Release 0.95.2

• normalize (bool) – Whether to first normalize the

Returns

• k (float) – The slope of the linear regression model, which is gamma under the steady state
assumption.

• b (float) – The intercept of the linear regression model.

• r2 (float) – Coefficient of determination or r square for the extreme data points.

• r2 (float) – Coefficient of determination or r square for the extreme data points.

• all_r2 (float) – Coefficient of determination or r square for all data points.

get_exist_data_names()
Get the names of all the data that are not ‘None’.

get_n_genes(key=None, data=None)
Get the number of genes.

set_parameter(name, value)
Set the value for the specified parameter.

Parameters

• name (string) – The name of the parameter. E.g. ‘beta’.

• value (ndarray) – A vector of values for the parameter to be set to.

solve_alpha_mix_std_stm(t, ul, beta, clusters=None, alpha_time_dependent=True)
Estimate the steady state transcription rate and analytically calculate the stimulation transcription rate
given beta and steady state alpha for a mixed steady state and stimulation labeling experiment.

This approach assumes the same constant beta or gamma for both steady state or stimulation period.

Parameters

• t (list or numpy.ndarray) – Time period for stimulation state labeling for each cell.

• ul – A vector of labeled RNA amount in each cell.

• beta (numpy.ndarray) – A list of splicing rate for genes.

• clusters (list) – A list of n clusters, each element is a list of indices of the samples
which belong to this cluster.

• alpha_time_dependent (bool) – Whether or not to model the simulation alpha rate
as a time dependent variable.

Returns alpha_std, alpha_stm – The constant steady state transcription rate (alpha_std) or
time-dependent or time-independent (determined by alpha_time_dependent) transcription
rate (alpha_stm)

Return type numpy.ndarray, numpy.ndarray

class csc.velocity(alpha=None, beta=None, gamma=None, eta=None, delta=None, t=None, estima-
tion=None)

The class that computes RNA/protein velocity given unknown parameters.

Parameters

• alpha (ndarray) – A matrix of transcription rate.

• beta (ndarray) – A vector of splicing rate constant for each gene.

• gamma (ndarray) – A vector of spliced mRNA degradation rate constant for each gene.

36 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• eta (ndarray) – A vector of protein synthesis rate constant for each gene.

• delta (ndarray) – A vector of protein degradation rate constant for each gene.

• t (ndarray or None (default: None)) – A vector of the measured time points for cells

• estimation (ss_estimation) – An instance of the estimation class. If this not None,
the parameters will be taken from this class instead of the input arguments.

get_n_cells()
Get the number of cells if the parameter alpha is given.

Returns n_cells – The second dimension of the alpha matrix, if alpha is given.

Return type int

get_n_genes()
Get the number of genes.

Returns n_genes – The first dimension of the alpha matrix, if alpha is given. Or, the length of
beta, gamma, eta, or delta, if they are given.

Return type int

vel_p(S, P)
Calculate the protein velocity.

Parameters

• S (ndarray or sparse csr_matrix) – A matrix of spliced mRNA counts. Dimension:
genes x cells.

• P (ndarray or sparse csr_matrix) – A matrix of protein counts. Dimension: genes x
cells.

Returns V – Each column of V is a velocity vector for the corresponding cell. Dimension: genes
x cells.

Return type ndarray or sparse csr_matrix

vel_s(U, S)
Calculate the unspliced mRNA velocity.

Parameters

• U (ndarray or sparse csr_matrix) – A matrix of unspliced mRNA counts. Dimension:
genes x cells.

• S (ndarray or sparse csr_matrix) – A matrix of spliced mRNA counts. Dimension:
genes x cells.

Returns V – Each column of V is a velocity vector for the corresponding cell. Dimension: genes
x cells.

Return type ndarray or sparse csr_matrix

vel_u(U)
Calculate the unspliced mRNA velocity.

Parameters U (ndarray or sparse csr_matrix) – A matrix of unspliced mRNA count. Dimen-
sion: genes x cells.

Returns V – Each column of V is a velocity vector for the corresponding cell. Dimension: genes
x cells.

Return type ndarray or sparse csr_matrix

2.3. Class 37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

dynamo, Release 0.95.2

Time-resolved metabolic labeling based scRNA-seq (est.tsc)

Base class: a general estimation framework

class tsc.kinetic_estimation(param_ranges, x0_ranges, simulator)
A general parameter estimation framework for all types of time-seris data

Parameters

• param_ranges (ndarray) – A n-by-2 numpy array containing the lower and upper
ranges of n parameters (and initial conditions if not fixed).

• x0_ranges (ndarray) – Lower and upper bounds for initial conditions for the integra-
tors. To fix a parameter, set its lower and upper bounds to the same value.

• simulator (utils_kinetic.Linear_ODE) – An instance of python class which
solves ODEs. It should have properties ‘t’ (k time points, 1d numpy array), ‘x0’ (initial
conditions for m species, 1d numpy array), and ‘x’ (solution, k-by-m array), as well as two
functions: integrate (numerical integration), solve (analytical method).

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

38 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

Deterministic models via analytical solution of ODEs

class tsc.Estimation_DeterministicDeg(beta=None, gamma=None, x0=None)
An estimation class for degradation (with splicing) experiments. Order of species: <unspliced>, <spliced>

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

2.3. Class 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

class tsc.Estimation_DeterministicDegNosp(gamma=None, x0=None)
An estimation class for degradation (without splicing) experiments.

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

40 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• df (int)

• Degree of freedom.

class tsc.Estimation_DeterministicKinNosp(alpha, gamma, x0=0)
An estimation class for kinetics (without splicing) experiments with the deterministic model. Order of species:
<unspliced>, <spliced>

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

2.3. Class 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

class tsc.Estimation_DeterministicKin(alpha, beta, gamma, x0=array([0.0, 0.0]))
An estimation class for kinetics experiments with the deterministic model. Order of species: <unspliced>,
<spliced>

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

Stochastic models via matrix form of moment equations

42 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

class tsc.Estimation_MomentDeg(beta=None, gamma=None, x0=None, include_cov=True)
An estimation class for degradation (with splicing) experiments. Order of species: <unspliced>, <spliced>,
<uu>, <ss>, <us> Order of parameters: beta, gamma

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

class tsc.Estimation_MomentDegNosp(gamma=None, x0=None)
An estimation class for degradation (without splicing) experiments.

An estimation class for degradation (without splicing) experiments. Order of species: <r>, <rr>

2.3. Class 43

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

class tsc.Estimation_MomentKin(a, b, alpha_a, alpha_i, beta, gamma, include_cov=True)
An estimation class for kinetics experiments. Order of species: <unspliced>, <spliced>, <uu>, <ss>, <us>

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

44 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

class tsc.Estimation_MomentKinNosp(a, b, alpha_a, alpha_i, gamma)
An estimation class for kinetics experiments. Order of species: <r>, <rr>

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

2.3. Class 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

Mixture models for kinetic / degradation experiments

class tsc.Lambda_NoSwitching(model1, model2, alpha=None, lambd=None, gamma=None,
x0=None, beta=None)

An estimation class with the mixture model. If beta is None, it is assumed that the data does not have the splicing
process.

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

46 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

class tsc.Mixture_KinDeg_NoSwitching(model1, model2, alpha=None, gamma=None,
x0=None, beta=None)

An estimation class with the mixture model. If beta is None, it is assumed that the data does not have the splicing
process.

fit_lsq(t, x_data, p0=None, n_p0=1, bounds=None, sample_method='lhs', method=None, normal-
ize=True)

Fit time-seris data using least squares

Parameters

• t (ndarray) – A numpy array of n time points.

• x_data (ndarray) – A m-by-n numpy a array of m species, each having n values for
the n time points.

• p0 (numpy.ndarray, optional, default: None) – Initial guesses of parameters. If None,
a random number is generated within the bounds.

2.3. Class 47

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• n_p0 (int, optional, default: 1) – Number of initial guesses.

• bounds (tuple, optional, default: None) – Lower and upper bounds for
parameters.

• sample_method (str, optional, default: lhs) – Method used for sampling initial guesses
of parameters: lhs: latin hypercube sampling; uniform: uniform random sampling.

• method (str or None, optional, default: None) – Method used for solv-
ing ODEs. See options in simulator classes. If None, default method is used.

• normalize (bool, optional, default: True) – Whether or not normalize
values in x_data across species, so that large values do not dominate the optimizer.

Returns

• popt (ndarray) – Optimal parameters.

• cost (float) – The cost function evaluated at the optimum.

test_chi2(t, x_data, species=None, method='matrix', normalize=True)
perform a Pearson’s chi-square test. The statistics is computed as: sum_i (O_i - E_i)^2 / E_i, where O_i is
the data and E_i is the model predication.

The data can be either 1. stratified moments: ‘t’ is an array of k distinct time points, ‘x_data’ is a m-by-k
matrix of data, where m is the number of species. or 2. raw data: ‘t’ is an array of k time points for k
cells, ‘x_data’ is a m-by-k matrix of data, where m is the number of species. Note that if the method is
‘numerical’, t has to monotonically increasing.

If not all species are included in the data, use ‘species’ to specify the species of interest.

Returns

• p (float)

• The p-value of a one-tailed chi-square test.

• c2 (float)

• The chi-square statistics.

• df (int)

• Degree of freedom.

2.3.2 Vector field

Vector field class

class dynamo.vf.vectorfield(X=None, V=None, Grid=None, **kwargs)
Initialize the VectorField class.

Parameters

• X ('np.ndarray' (dimension: n_obs x n_features)) – Original data.

• V ('np.ndarray' (dimension: n_obs x n_features)) – Velocities of cells
in the same order and dimension of X.

• Grid ('np.ndarray') – The function that returns diffusion matrix which can be depen-
dent on the variables (for example, genes)

48 Chapter 2. Contribution

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dynamo, Release 0.95.2

• M ('int' (default: None)) – The number of basis functions to approximate the vec-
tor field. By default it is calculated as min(len(X), int(1500 * np.log(len(X)) / (np.log(len(X))
+ np.log(100)))). So that any datasets with less than about 900 data points (cells) will use
full data for vector field reconstruction while any dataset larger than that will at most use
1500 data points.

• a (float (default 5)) – Parameter of the model of outliers. We assume the outliers obey
uniform distribution, and the volume of outlier’s variation space is a.

• beta (float (default: None)) – Parameter of Gaussian Kernel, k(x, y) = exp(-beta*||x-y||^2).
If None, a rule-of-thumb bandwidth will be computed automatically.

• ecr (float (default: 1e-5)) – The minimum limitation of energy change rate in the iteration
process.

• gamma (float (default: 0.9)) – Percentage of inliers in the samples. This is an inital value
for EM iteration, and it is not important. Default value is 0.9.

• lambda (float (default: 3)) – Represents the trade-off between the goodness of data fit and
regularization.

• minP (float (default: 1e-5)) – The posterior probability Matrix P may be singular for matrix
inversion. We set the minimum value of P as minP.

• MaxIter (int (default: 500)) – Maximum iteration times.

• theta (float (default 0.75)) – Define how could be an inlier. If the posterior probability of
a sample is an inlier is larger than theta, then it is regarded as an inlier.

• div_cur_free_kernels (bool (default: False)) – A logic flag to determine whether
the divergence-free or curl-free kernels will be used for learning the vector field.

• sigma ('int') – Bandwidth parameter.

• eta ('int') – Combination coefficient for the divergence-free or the curl-free kernels.

• seed (int or 1-d array_like, optional (default: 0)) – Seed for RandomState. Must be con-
vertible to 32 bit unsigned integers. Used in sampling control points. Default is to be 0 for
ensure consistency between different runs.

fit(normalize=False, method='SparseVFC', **kwargs)
Learn an function of vector field from sparse single cell samples in the entire space robustly. Reference:
Regularized vector field learning with sparse approximation for mismatch removal, Ma, Jiayi, etc. al,
Pattern Recognition

Parameters

• normalize ('bool' (default: False)) – Logic flag to determine whether to
normalize the data to have zero means and unit covariance. This is often required for raw
dataset (for example, raw UMI counts and RNA velocity values in high dimension). But
it is normally not required for low dimensional embeddings by PCA or other non-linear
dimension reduction methods.

• method ('string') – Method that is used to reconstruct the vector field functionally.
Currently only SparseVFC supported but other improved approaches are under develop-
ment.

Returns VecFld – A dictionary which contains X, Y, beta, V, C, P, VFCIndex. Where V = f(X),
P is the posterior probability and VFCIndex is the indexes of inliers which found by VFC.

Return type `dict’

2.3. Class 49

dynamo, Release 0.95.2

get_Jacobian(method='analytical', input_vector_convention='row', **kwargs)
Get the Jacobian of the vector field function. If method is ‘analytical’: The analytical Jacobian will be
returned and it always take row vectors as input no matter what input_vector_convention is.

If method is ‘numerical’: If the input_vector_convention is ‘row’, it means that fjac takes row vectors as
input, otherwise the input should be an array of column vectors. Note that the returned Jacobian would
behave exactly the same if the input is an 1d array.

The column vector convention is slightly faster than the row vector convention. So the matrix of row vector
convention is converted into column vector convention under the hood.

No matter the method and input vector convention, the returned Jacobian is of the following format:

df_1/dx_1 df_1/dx_2 df_1/dx_3 . . . df_2/dx_1 df_2/dx_2 df_2/dx_3 . . . df_3/dx_1 df_3/dx_2
df_3/dx_3

evaluate(CorrectIndex, VFCIndex, siz)
Evaluate the precision, recall, corrRate of the sparseVFC algorithm.

Parameters

• CorrectIndex ('List') – Ground truth indexes of the correct vector field samples.

• VFCIndex ('List') – Indexes of the correct vector field samples learned by VFC.

• siz ('int') – Number of initial matches.

Returns

• A tuple of precision, recall, corrRate

• Precision, recall, corrRate (Precision and recall of VFC, percentage of initial correct
matches.)

• See also:: sparseVFC().

class dynamo.vf.Pot(Function=None, DiffMat=None, boundary=None, n_points=25,
fixed_point_only=False, find_fixed_points=False, refpoint=None, stable=None,
saddle=None)

It implements the least action method to calculate the potential values of fixed points for a given SDE (stochastic
differential equation) model. The function requires the vector field function and a diffusion matrix. This code
is based on the MATLAB code from Ruoshi Yuan and Ying Tang. Potential landscape of high dimensional
nonlinear stochastic dynamics with large noise. Y Tang, R Yuan, G Wang, X Zhu, P Ao - Scientific reports,
2017

Parameters

• Function ('function') – The (reconstructed) vector field function.

• DiffMat ('function') – The function that returns the diffusion matrix which can vari-
able (for example, gene) dependent.

• boundary ('list') – The range of variables (genes).

• n_points ('int') – The number of points along the least action path.

• fixed_point_only ('bool') – The logic flag to determine whether only the potential
for fixed point or entire space should be mapped.

• find_fixed_points ('bool') – The logic flag to determine whether only the
gen_fixed_points function should be run to identify fixed points.

• refpoint ('np.ndarray') – The reference point to define the potential.

• stable ('np.ndarray') – The matrix for storing the coordinates (gene expression con-
figuration) of the stable fixed point (characteristic state of a particular cell type).

50 Chapter 2. Contribution

dynamo, Release 0.95.2

• saddle ('np.ndarray') – The matrix for storing the coordinates (gene expression con-
figuration) of the unstable fixed point (characteristic state of cells prime to bifurcation).

fit(adata, x_lim, y_lim, basis='umap', method='Ao', xyGridSpacing=2, dt=0.01, tol=0.01, num-
TimeSteps=1400)
Function to map out the pseudo-potential landscape.

Although it is appealing to define “potential” for biological systems as it is intuitive and familiar from other
fields, it is well-known that the definition of a potential function in open biological systems is controversial
(Ping Ao 2009). In the conservative system, the negative gradient of potential function is relevant to the
velocity vector by ma = (where m, a, are the mass and acceleration of the object, respectively). However, a
biological system is massless, open and nonconservative, thus methods that directly learn potential function
assuming a gradient system are not directly applicable. In 2004, Ao first proposed a framework that
decomposes stochastic differential equations into either the gradient or the dissipative part and uses the
gradient part to define a physical equivalent of potential in biological systems (P. Ao 2004). Later, various
theoretical studies have been conducted towards this very goal (Xing 2010; Wang et al. 2011; J. X. Zhou
et al. 2012; Qian 2013; P. Zhou and Li 2016). Bhattacharya and others also recently provided a numeric
algorithm to approximate the potential landscape.

This function implements the Ao, Bhattacharya method and Ying method and will also support other
methods shortly.

Parameters

• adata (AnnData) – AnnData object that contains U_grid and V_grid data

• x_lim (list) – Lower or upper limit of x-axis.

• y_lim (list) – Lower or upper limit of y-axis

• basis (str (default: umap)) – The dimension reduction method to use.

• method ('string' (default: Bhattacharya)) – Method used to map the
pseudo-potential landscape. By default, it is Bhattacharya (A deterministic map of
Waddington’s epigenetic landscape for cell fate specification. Sudin Bhattacharya, Qiang
Zhang and Melvin E. Andersen). Other methods will be supported include: Tang (), Ping
(), Wang (), Zhou ().

Returns

• if Bhattacharya is used –

Xgrid: ‘np.ndarray’ The X grid to visualize “potential surface”

Ygrid: ‘np.ndarray’ The Y grid to visualize “potential surface”

Zgrid: ‘np.ndarray’ The interpolate potential corresponding to the X,Y grids.

• if Tang method is used

• retmat (‘np.ndarray’) – The action value for the learned least action path.

• LAP (‘np.ndarray’) – The least action path learned

2.3. Class 51

dynamo, Release 0.95.2

2.3.3 Movie

Animation class

class dynamo.mv.StreamFuncAnim(adata, basis='umap', dims=None, n_steps=100,
cell_states=None, color='ntr', fig=None, ax=None,
logspace=False, max_time=None, frame_color=None)

Animating cell fate commitment prediction via reconstructed vector field function.

Animating cell fate commitment prediction via reconstructed vector field function.

This class creates necessary components to produce an animation that describes the exact speed of a set of cells
at each time point, its movement in gene expression and the long range trajectory predicted by the reconstructed
vector field. Thus it provides intuitive visual understanding of the RNA velocity, speed, acceleration, and cell
fate commitment in action.

This function is originally inspired by https://tonysyu.github.io/animating-particles-in-a-flow.html and relies on
animation module from matplotlib. Note that you may need to install imagemagick in order to properly show or
save the animation. See for example, http://louistiao.me/posts/notebooks/save-matplotlib-animations-as-gifs/
for more details.

Parameters

• adata (AnnData) – AnnData object that already went through the fate prediction.

• basis (str or None (default: None)) – The embedding data to use for predicting cell fate.
If basis is either umap or pca, the reconstructed trajectory will be projected back to high
dimensional space via the inverse_transform function. space.

• dims (list or None (default: `None’)) – The dimensions of low embedding space where
cells will be drawn and it should corresponds to the space fate prediction take place.

• n_steps (int (default: 100)) – The number of times steps (frames) fate prediction will
take.

• cell_states (int, list or None (default: None)) – The number of cells state that will be
randomly selected (if int), the indices of the cells states (if list) or all cell states which fate
prediction executed (if None)

• fig (matplotlib.figure.Figure or None (default: None)) – The figure that will contain both
the background and animated components.

• ax (matplotlib.Axis (optional, default None)) – The matplotlib axes object that will be used
as background plot of the vector field animation. If ax is None, topography(adata, ba-
sis=basis, color=color, ax=ax, save_show_or_return=’return’) will be used to create an
axes.

• logspace (bool (default: False)) – Whether or to sample time points linearly on log space.
If not, the sorted unique set of all time points from all cell states’ fate prediction will be used
and then evenly sampled up to n_steps time points.

Returns

• A class that contains .fig attribute and .update, .init_background that can be used to produce
an animation

• of the prediction of cell fate commitment.

>>> from matplotlib import animation
>>> progenitor = adata.obs_names[adata.obs.clusters == 'cluster_1']
>>> fate_progenitor = progenitor

(continues on next page)

52 Chapter 2. Contribution

https://tonysyu.github.io/animating-particles-in-a-flow.html
http://louistiao.me/posts/notebooks/save-matplotlib-animations-as-gifs/

dynamo, Release 0.95.2

(continued from previous page)

>>> info_genes = adata.var_names[adata.var.use_for_transition]
>>> dyn.pd.fate(adata, basis='umap', init_cells=fate_progenitor, interpolation_
→˓num=100, direction='forward',
... inverse_transform=False, average=False)
>>> instance = dyn.mv.StreamFuncAnim(adata=adata, fig=None, ax=None)
>>> anim = animation.FuncAnimation(instance.fig, instance.update, init_
→˓func=instance.init_background,
... frames=np.arange(100), interval=100, blit=True)
>>> from IPython.core.display import display, HTML
>>> HTML(anim.to_jshtml()) # embedding to jupyter notebook.
>>> anim.save('fate_ani.gif',writer="imagemagick") # save as gif file.

>>> from matplotlib import animation
>>> progenitor = adata.obs_names[adata.obs.clusters == 'cluster_1']
>>> fate_progenitor = progenitor
>>> info_genes = adata.var_names[adata.var.use_for_transition]
>>> dyn.pd.fate(adata, basis='umap', init_cells=fate_progenitor, interpolation_
→˓num=100, direction='forward',
... inverse_transform=False, average=False)
>>> fig, ax = plt.subplots()
>>> ax = dyn.pl.topography(adata_old, color='time', ax=ax, save_show_or_return=
→˓'return', color_key_cmap='viridis')
>>> ax.set_xlim(xlim)
>>> ax.set_ylim(ylim)
>>> instance = dyn.mv.StreamFuncAnim(adata=adata, fig=fig, ax=ax)
>>> anim = animation.FuncAnimation(fig, instance.update, init_func=instance.init_
→˓background,
... frames=np.arange(100), interval=100, blit=True)
>>> from IPython.core.display import display, HTML
>>> HTML(anim.to_jshtml()) # embedding to jupyter notebook.
>>> anim.save('fate_ani.gif',writer="imagemagick") # save as gif file.

>>> from matplotlib import animation
>>> progenitor = adata.obs_names[adata.obs.clusters == 'cluster_1']
>>> fate_progenitor = progenitor
>>> info_genes = adata.var_names[adata.var.use_for_transition]
>>> dyn.pd.fate(adata, basis='umap', init_cells=fate_progenitor, interpolation_
→˓num=100, direction='forward',
... inverse_transform=False, average=False)
>>> dyn.mv.animate_fates(adata)

See also:: animate_fates()

update(frame)
Update locations of “particles” in flow on each frame frame.

2.3. Class 53

dynamo, Release 0.95.2

2.4 Release notes

Information to be added.

2.5 Reference

2.6 Acknowledgement

We would like to sincerely thank the developers of velocyto (La Manno Gioele and others), scanpy (Alex Wolf and
others) and svelo (Volker Bergen and others) on their amazing tools which demonstrate the best practice of scientific
programming in Python. Dynamo takes various technical inspiration from those packages. It also provides full com-
patibilities with them. Velocity estimations from either velocyto or scvelo can both be used as input in dynamo to learn
the functional form of vector field and then to predict the cell fate over extended time period as well as to map global
cell state potential.

2.7 Zebrafish pigmentation

This tutorial uses data from Saunders, et al (2019). Special thanks also go to Lauren for the tutorial improvement.

In this study, the authors profiled thousands of neural crest-derived cells from trunks of post-embryonic zebrafish.
These cell classes include pigment cells, multipotent pigment cell progenitors, peripheral neurons, Schwann cells,
chromaffin cells and others. These cells were collected during an active period of post-embryonic development, which
has many similarities to fetal and neonatal development in mammals, when many of these cell types are migrating and
differentiating as the animal transitions into its adult form. This study also explores the role of thyroid hormone (TH),
a common endocrine factor, on the development of these different cell types.

Such developmental and other dynamical processes are especially suitable for dynamo analysis as dynamo is designed
to accurately estimate direction and magnitude of expression dynamics (RNA velocity), predict the entire lineage
trajectory of any intial cell state (vector field), characterize the structure (vector field topology) of
full gene expression space, as well as fate commitment potential (single cell potential).

[]: # get the latest pypi version
to get the latest version on github and other installations approaches, see:
https://dynamo-release.readthedocs.io/en/latest/ten_minutes_to_dynamo.html#how-to-
→˓install
!pip install dynamo-release --upgrade --quiet

Import the package and silence some warning information (mostly is_categorical_dtype warning from ann-
data)

[1]: import warnings
warnings.filterwarnings('ignore')

import dynamo as dyn

this is like R’s sessionInfo() which helps you to debug version related bugs if any.

[2]: dyn.get_all_dependencies_version()

package dynamo-release umap-learn anndata cvxopt hdbscan loompy matplotlib \
version 0.95.2 0.4.6 0.7.4 1.2.3 0.8.26 3.0.6 3.3.0

(continues on next page)

54 Chapter 2. Contribution

https://elifesciences.org/articles/45181
https://twitter.com/LSaund11
https://elifesciences.org/articles/45181

dynamo, Release 0.95.2

(continued from previous page)

package numba numpy pandas pynndescent python-igraph scikit-learn scipy \
version 0.51.0 1.19.1 1.1.1 0.4.8 0.8.2 0.23.2 1.5.2

package seaborn setuptools statsmodels tqdm trimap numdifftools colorcet
version 0.9.0 49.6.0 0.11.1 4.48.2 1.0.12 0.9.39 2.0.2

emulate ggplot2 plotting style with white background

[3]: dyn.configuration.set_figure_params('dynamo', background='white')

2.7.1 Load data

Dynamo comes with a few builtin sample datasets so you can familiarize with dynamo before analyzing your own
dataset. You can read your own data via read, read_loom, read_h5ad, read_h5 (powered by the anndata
package) or load_NASC_seq, etc. Here I just load the zebrafish sample data that comes with dynamo. This dataset
has 4181 cells and 16940 genes. Its .obs attribute also included condition, batch information from the original
study (you should also store those information to your .obs attribute which is essentially a Pandas Dataframe, see
more at anndata). Cluster, Cell_type, umap coordinates that was originally analyzed with Monocle 3 are also
provided.

[4]: adata = dyn.sample_data.zebrafish()

Observation names are not unique. To make them unique, call `.obs_names_make_unique`.

After loading data, you are ready to performs some preprocessing. You can run the recipe_monocle function
that uses similar but generalized strategy from Monocle 3 to normalize all datasets in different layers (the spliced
and unspliced or new, i.e. metabolic labelled, and total mRNAs or others), followed by feature selection, log1p
transformation of the data and PCA dimension reduction. recipe_monocle also does a few additionl steps, which
include:

• converting ensemble gene names to gene official name and set them as .var_names if needed.

• calculating number of expressed genes (nGenes), total expression values (nCounts), percentage of total
mitochondria gene values (pMito) for each cell and save them to .obs.

• detecting your experiment type (conventional scRNA-seq or time-resolved metabolic labeling datasets) and set
certain proper layers (i.e. ignore some unconventional layers provided by the users) to be size factor normalized,
log1p transformed, etc.

• makings cell (.obs_names) and gene names (.var_names) unique.

• savings data in .layers as csr sparse matrix for the purpose of memory efficency.

• adding collapsed new, total and unspliced, spliced layers from the uu, ul, su, sl layers of
a metabolic labeling experiment.

• calculating each cell’s cell cycle stage score.

• calculating new to total ratio (ntr) for each gene and cell.

Note that by default, we don’t filter any cells or genes for your adata object to avoid the trouble of los-
ing your favorite genes/cells. However, if your dataset is huge, we recommend filtering them by setting
keep_filtered_cells=False, keep_filtered_genes=False in recipe_monocle.

2.7. Zebrafish pigmentation 55

https://anndata.readthedocs.io/en/latest/anndata.AnnData.html
https://anndata.readthedocs.io/en/latest/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/

dynamo, Release 0.95.2

[5]: dyn.pp.recipe_monocle(adata)

[5]: AnnData object with n_obs × n_vars = 4181 × 16940
obs: 'split_id', 'sample', 'Size_Factor', 'condition', 'Cluster', 'Cell_type',

→˓'umap_1', 'umap_2', 'batch', 'nGenes', 'nCounts', 'pMito', 'use_for_pca', 'spliced_
→˓Size_Factor', 'initial_spliced_cell_size', 'unspliced_Size_Factor', 'initial_
→˓unspliced_cell_size', 'initial_cell_size', 'ntr'

var: 'pass_basic_filter', 'score', 'log_m', 'log_cv', 'use_for_pca', 'ntr'
uns: 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_variance_ratio_', 'pca_

→˓fit', 'feature_selection'
obsm: 'X_pca', 'X'
layers: 'spliced', 'unspliced', 'X_spliced', 'X_unspliced'

2.7.2 RNA velocity with parallelism

RNA velocity (𝑑𝑠𝑑𝑡) for conventional scRNA-seq is just 𝑑𝑠
𝑑𝑡 = 𝛽𝑢 − 𝛾𝑠 (while 𝑢/𝑠 is the unspliced or spliced mRNA

respectively.𝛽 is splicing rate and is generally assumed to be 1 while 𝛾 is degration rate and is what we need to
estimate). To estimate gamma for conventional scRNA-seq data, we provided three approaches deterministic,
stochastic and negbin. The first one is equivalent to velocyto’s implementation or scvelo’s deterministic mode
while the second one scvelo’s stochastic mode. Negative binomal is a novel method from us that relies on the negative
binomial formulation of gene exrpession distribution at steady state. Furthermore, we support multi-core parallelism
of gamma estimation so you can analyze your large single-cell datasets with dynamo efficiently.

dyn.tl.dynamics function combines gamma estimation and velocity calculation in one-shot. Furthermore, it
implicitly calls dyn.tl.moments first, and then performs the following steps:

• checks the data you have and determines the experimental type automatically, either the conventional scRNA-
seq, kinetics, degradation or one-shot single-cell metabolic labelling experiment or the CITE-seq or REAP-seq
co-assay, etc.

• learns the velocity for each feature gene using either the original deterministic model based on a steady-state
assumption from the seminal RNA velocity work or a few new methods, including the stochastic (default) or
negative binomial method for conventional scRNA-seq or kinetic, degradation or one-shot models for metabolic
labeling based scRNA-seq.

Those later methods are based on moment equations which basically considers both mean and uncentered variance
of gene expression. The moment based models require calculation of the first and second moments of the expression
data, which relies on the cell nearest neighbours graph, constructed in the reduced PCA space from the spliced or total
mRNA expression.

[6]: dyn.tl.dynamics(adata, model='stochastic', cores=3)
or dyn.tl.dynamics(adata, model='deterministic')
or dyn.tl.dynamics(adata, model='stochastic', est_method='negbin')

[6]: AnnData object with n_obs × n_vars = 4181 × 16940
obs: 'split_id', 'sample', 'Size_Factor', 'condition', 'Cluster', 'Cell_type',

→˓'umap_1', 'umap_2', 'batch', 'nGenes', 'nCounts', 'pMito', 'use_for_pca', 'spliced_
→˓Size_Factor', 'initial_spliced_cell_size', 'unspliced_Size_Factor', 'initial_
→˓unspliced_cell_size', 'initial_cell_size', 'ntr'

var: 'pass_basic_filter', 'score', 'log_m', 'log_cv', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics'

uns: 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_variance_ratio_', 'pca_
→˓fit', 'feature_selection', 'dynamics'

obsm: 'X_pca', 'X'
(continues on next page)

56 Chapter 2. Contribution

http://velocyto.org/
https://scvelo.readthedocs.io/

dynamo, Release 0.95.2

(continued from previous page)

layers: 'spliced', 'unspliced', 'X_spliced', 'X_unspliced', 'M_u', 'M_uu', 'M_s',
→˓'M_us', 'M_ss', 'velocity_S'

obsp: 'moments_con'

Next we perform dimension reduction (by default, UMAP) and visualize the UMAP embedding of cells. The provided
Cell_type information is also used to color cells. To get cluster/cell type information for your own data, dynamo
also provides facilities to perform clustering and marker gene detection. By default we use HDBSCAN for clustering.
HDBSCAN package was developed also by Leland McInnes, the developer of UMAP. You may clustering your single
cells in UMAP space (set basis='umap' instead of the default pca in HDBSCAN). See more discussion aboout
this here.

For marker gene detection, please check functions in Markers and differential expressions section in our API. A
more detailed tutorial designated for this will be released soon.

[7]: dyn.tl.reduceDimension(adata)

dyn.pl.umap(adata, color='Cell_type')

<Figure size 600x400 with 0 Axes>

Kinetic estimation of the conventional scRNA-seq and metabolic labeling based scRNA-seq is often tricky and has a
lot pitfalls. Sometimes you may even observed undesired backward vector flow. You can evaluate the confidence of
gene-wise velocity via:

dyn.tl.gene_wise_confidence(adata, group='group', lineage_dict={'Progenitor': [
→˓'terminal_cell_state']})

Here group is the column for the group informations for cells in the .obs. lineage_dict is a dictionary indicates
broad lineage information in which key points to the progenitor group while values (a list) are the possible terminal
cell groups, all from the group column.

In the following, let us have a look at the phase diagram of some genes that have velocity calculated. You will see
the pvalb1 gene has a strange phase diagram with a few cells have high spliced expression values but extremely low
unspliced expression values. Those kind of phase space may points to inproper intron capture of those genes during

2.7. Zebrafish pigmentation 57

https://dynamo-release.readthedocs.io/en/latest/_autosummary/dynamo.tl.hdbscan.html#dynamo.tl.hdbscan
https://umap-learn.readthedocs.io/en/latest/clustering.html
https://dynamo-release.readthedocs.io/en/latest/API.html

dynamo, Release 0.95.2

the library prepartion or sequencing and they should never be used for velocity projection and vector field analysis. A
tutorial with details for identifying those genes, evaluating the confidence of velocity estimation and then correcting
(briefly mentioned below) the RNA velocity results will be released soon.

[8]: dyn.pl.phase_portraits(adata, genes=adata.var_names[adata.var.use_for_dynamics][:4],
→˓figsize=(6, 4), color='Cell_type')

2.7.3 Velocity projection

In order to visualize the velocity vectors, we need to project the high dimensional velocity vector of cells to lower
dimension (although dynamo also enables you to visualize raw gene-pair velocity vectors, see below). The projection
involves calculating a transition matrix between cells for local averaging of velocity vectors in low dimension. There
are three methods to calculate the transition matrix, either kmc, cosine, pearson. kmc is our new approach to
learn the transition matrix via diffusion approximation or an Itô kernel. cosine or pearson are the methods used
in the original velocyto or the scvelo implementation. Kernels that are based on the reconstructed vector
field in high dimension is also possible and maybe more suitable because of its and robustness and smoothness. We
will show you how to do that in another tutorial soon!

58 Chapter 2. Contribution

http://velocyto.org/
https://scvelo.readthedocs.io/

dynamo, Release 0.95.2

[9]: dyn.tl.cell_velocities(adata, method='pearson', other_kernels_dict={'transform': 'sqrt
→˓'})

calculating transition matrix via pearson kernel with sqrt transform.: 100%|| 4181/
→˓4181 [00:10<00:00, 409.52it/s]
projecting velocity vector to low dimensional embedding...: 100%|| 4181/4181 [00:01
→˓<00:00, 3947.53it/s]

[9]: AnnData object with n_obs × n_vars = 4181 × 16940
obs: 'split_id', 'sample', 'Size_Factor', 'condition', 'Cluster', 'Cell_type',

→˓'umap_1', 'umap_2', 'batch', 'nGenes', 'nCounts', 'pMito', 'use_for_pca', 'spliced_
→˓Size_Factor', 'initial_spliced_cell_size', 'unspliced_Size_Factor', 'initial_
→˓unspliced_cell_size', 'initial_cell_size', 'ntr'

var: 'pass_basic_filter', 'score', 'log_m', 'log_cv', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics', 'use_for_transition'

uns: 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_variance_ratio_', 'pca_
→˓fit', 'feature_selection', 'dynamics', 'neighbors', 'umap_fit', 'grid_velocity_umap'

obsm: 'X_pca', 'X', 'X_umap', 'velocity_umap'
layers: 'spliced', 'unspliced', 'X_spliced', 'X_unspliced', 'M_u', 'M_uu', 'M_s',

→˓'M_us', 'M_ss', 'velocity_S'
obsp: 'moments_con', 'connectivities', 'distances', 'pearson_transition_matrix'

You can check the confidence of cell-wise velocity to understand how reliable the recovered velocity is across cells or
even correct velocty based on some prior:

dyn.tl.cell_wise_confidence(adata, basis='pca')
dyn.tl.confident_cell_velocities(adata, group='group', lineage_dict={'Progenitor': [
→˓'terminal_cell_state']},)

There are three methods implemented for calculating the cell wise velocity confidence metric. By default it uses
jaccard index, which measures how well each velocity vector meets the geometric constraints defined by the local
neighborhood structure. Jaccard index is calculated as the fraction of the number of the intersected set of nearest
neighbors from each cell at current expression state (X) and that from the future expression state (X + V) over the
number of the union of these two sets. The cosine or correlation method is similar to that used by scVelo.

Next let us visualize the projected RNA velocity. We can see that the recovered RNA velocity flow shows a nice
transition from proliferating progenitors to pigment progenitors which then bifurcate into either
melanophore or iridopore on the left. In the middle, the proliferating progenitors bifurcate up-
ward into either chromaffin, neuron or satellite glia cells. On the right, the proliferation
progenitors bifurcate into either Schwann cell precursor which then become Schwann cells or
other glia. In the bottom, some proliferating progenitorschoose to become an unkown cell lin-
eage. In addition, the xanthophore cells are seem to be an outlier group on the top, indicating it has a different
lineage path comparing to melanophore or iridophore pigment cells. The transcriptional discontinuity from
multipotent progenitors to xanthophore cells may also imply its lineage trajectory is more rapid comparing to that
of melanophore or iridophore pigment cells.

[10]: dyn.pl.cell_wise_vectors(adata, color=['Cell_type'], basis='umap', show_legend='on
→˓data', quiver_length=6, quiver_size=6, pointsize=0.1, show_arrowed_spines=False)

<Figure size 600x400 with 0 Axes>

2.7. Zebrafish pigmentation 59

https://github.com/theislab/scvelo

dynamo, Release 0.95.2

[11]: dyn.pl.streamline_plot(adata, color=['Cell_type'], basis='umap', show_legend='on data
→˓', show_arrowed_spines=True)

<Figure size 600x400 with 0 Axes>

60 Chapter 2. Contribution

dynamo, Release 0.95.2

Note that, if you pass x='gene_a', y='gene_b' to cell_wise_vectors, grid_vectors or
streamline_plot, you can visualize the raw gene-pair velocity flows. gene_a and gene_b need to have veloc-
ity calculated (or use_for_dynamics in .var for those genes are True)

2.7.4 Reconstruct vector field

In classical physics, including fluidics and aerodynamics, velocity and acceleration vector fields are used as fundamen-
tal tools to describe motion or external force of objects, respectively. In analogy, RNA velocity or protein accelerations
estimated from single cells can be regarded as sparse samples in the velocity (La Manno et al. 2018) or acceleration
vector field (Gorin, Svensson, and Pachter 2019) that defined on the gene expression space.

In general, a vector field can be defined as a vector-valued function f that maps any points (or cells’ expression state) x
in a domain with D dimension (or the gene expression system with D transcripts / proteins) to a vector y (for example,
the velocity or acceleration for different genes or proteins), that is f(x) = y.

To formally define the problem of velocity vector field learning, we consider a set of measured cells with pairs of
current and estimated future expression states. The difference between the predicted future state and current state for
each cell corresponds to the velocity. We suppose that the measured single-cell velocity is sampled from a smooth, dif-
ferentiable vector field f that maps from xi to yi on the entire domain. Normally, single cell velocity measurements are
results of biased, noisy and sparse sampling of the entire state space, thus the goal of velocity vector field reconstruc-
tion is to robustly learn a mapping function f that outputs yj given any point xj on the domain based on the observed
data with certain smoothness constraints (Jiayi Ma et al. 2013). Under ideal scenario, the mapping function f should
recover the true velocity vector field on the entire domain and predict the true dynamics in regions of expression space
that are not sampled. To reconstruct vector field function in dynamo, you can simply use the following function to do
all the heavy-lifting:

2.7. Zebrafish pigmentation 61

dynamo, Release 0.95.2

[12]: # you can set `verbose = 1/2/3` to obtain different levels of running information of
→˓vector field reconstruction
dyn.vf.VectorField(adata, basis='umap', M=1000, pot_curl_div=True)

Constructing diffusion graph from reconstructed vector field: 4181it [03:22, 20.61it/
→˓s]
Calculating 2-D curl: 100%|| 4181/4181 [00:00<00:00, 11763.55it/s]
Calculating divergence: 100%|| 4181/4181 [00:00<00:00, 10544.14it/s]

Vector field recunstruction is blazingly efficient and scale linearly with the cell number and dimensions. So you can do
vector field reconstruction for hundred thousands of cells in PCA space on a matter of minutes. How good your vector
field reconstruction is? We have several metrics to quantify that and we will provide a detailed tutorial on that in a
couple of days. The easiest way, though, is to check the energy / energy change rate to see whether they are decreasing
and gradually stabiling during the vector field learning process:

dyn.pl.plot_energy(adata)

2.7.5 Characterize vector field topology

Since we learn the vector field function of the data, we can then characterize the topology of the full vector field space.
For example, we are able to identify

• the fixed points (attractor/saddles, etc.) which may corresponds to terminal cell types or progenitors;

• nullcline, separatrices of a recovered dynamic system, which may formally define the dynamical behaviour or
the boundary of cell types in gene expression space.

Note that we use the name of topography instead of topology in tools or plot modules because we figured
out the 2D full vector field plot (instead of just domains with cells as those visualized by streamline_plot
function) with those fixed points, nullclines, etc. looks like a topography plot. Enlighten us if you have a better idea.
And see also more discussion here.

When we recostruct a 2 D vector field (which is the case above), we automatically characterize the vector field topol-
ogy. Let us take a look a the fixed points identified by dynamo for this system.

[13]: dyn.pl.topography(adata, basis='umap', background='white', color=['ntr', 'Cell_type'],
→˓ streamline_color='black', show_legend='on data', frontier=True)

62 Chapter 2. Contribution

https://www.askdifference.com/topology-vs-topography/

dynamo, Release 0.95.2

There are a lot of fixed points identified by dynamo. Some of them are less confident than others and we use the filled
color of each node to represent the confidence. The shape of node also has some meaning. Half circles are saddle
points while full circle are stable fixed points (the eigenvalue of the jacobian matrix at those places are all negative
based on the reconstructed vector field). The color of digits in each node is related to the type of fixed points:

• black: absorbing fixed points;

• red: emitting fixed points;

• blue: unstable fixed points.

We notice that, interesting, node 6 corresponds an emitting fixed point which makes sense as it is located in the
domain of progenitor cell state; on the other hand, nodes 70, 44, 14 and 72 are absorbing fixed points, and
each corresponds to the melanophore, iridophore, unknown or the xanthophore terminal cell type state.
Lastly, nodes 20 and 29 are unstable fixed points (saddle points), each corresponds to the bifurcation point of
the iridophore and melanophore lineages or that of the neuron and satellite glia lineages.

So overall this topology analysis did a pretty good job!

The concept of potential landscape is widely appreciated across various biological disciplines, for example the adaptive
landscape in population genetics, protein-folding funnel landscape in biochemistry, epigenetic landscape in develop-
mental biology. In the context of cell fate transition, for example, differentiation, carcinogenesis, etc, a potential
landscape not only offers an intuitive description of the global dynamics of the biological process but also provides
key insights to understand the multi-stability and transition rate between different cell types as well as to quantify the
optimal path of cell fate transition.

The classical definition of potential function in physics requires gradient systems (no curl/cycling part), it thus is
often not applicable to open biological system. In dynamo we provided several ways to quantify the potential of
single cells by decomposing the vector field into gradient, curl parts, etc and use the gradient part to define potential.
The recommended method is built on the Hodge decomposition on simplicial complexes (a sparse directional graph)
constructed based on the learned vector field function that provides fruitful analogy of gradient, curl and harmonic
(cyclic) flows on manifold.

Single cell potential (In fact, it is the negative of potential here for the purpose to match up with the common usuage of
pseudotime so that small values correspond to the progenitor state while large values terminal cell states.) estimated
by dynamo can be regarded as a replacement of pseudotime. Since dynamo utilizes velocity which consists of direction
and magnitude of cell dynamics, potential should be more relevant to real time and intrinsically directional (so you
don’t need to orient the trajectory).

[14]: dyn.pl.umap(adata, color='umap_ddhodge_potential', frontier=True)

<Figure size 600x400 with 0 Axes>

2.7. Zebrafish pigmentation 63

dynamo, Release 0.95.2

Here we can check a few genes from figure 3 (si 5) of Saunders, et al (2019) to see their expression dynamics
over time. As expected, we can see that mitfa expression declined only marginally with melanophore differentiation
yet decreased markedly with a transition from progenitor to iridophore as expected (Curran et al., 2010). pax3a was
expressed in pigment progenitors and decreased across pseudotime in melanophores, whereas expression of tfec,
a transcription factor expressed in iridophores (Lister et al., 2011), increased over pseudotime. Melanin synthesis
enzyme genes, dct and tyrp1b, as well as pmel, encoding a melanosome-associated transmembrane protein, all
increased over pseudotime in melanophores. In iridophores, gpnmb and pnp4a showed elevated expression late in
pseudotime, as expected (Curran et al., 2010; Higdon et al., 2013).

[15]: import numpy as np

fig3_si5 = ['mitfa', 'pax3a', 'tfec', 'dct', 'alx4b', 'tyrp1b', 'gpnmb', 'pmela',
→˓'pnp4a']

dyn.pl.scatters(adata, x=np.repeat('umap_ddhodge_potential', 9), pointsize=0.25,
→˓alpha=0.8, y=fig3_si5, layer='X_spliced', color='Cell_type',

ncols=3, background='white', figsize=(7, 4))

64 Chapter 2. Contribution

dynamo, Release 0.95.2

2.7.6 Beyond RNA velocity

Here let us take a glimpse on how dynamo can go beyond RNA velocity analysis by taking advantage of the analytical
vector field function it learns. Here we will first project the RNA velocity to pca space and then reconstruct the vector
field function in the PCA space. We then followed by calculating curl (curl is calculated in 2 dimensional UMAP
space by default as it is only defined in 2/3 dimension), divergence, acceleration and curvature. Those
calculations are incredibly efficient (on the order of seconds for ten thousands of cells in 30 PCs) as they are calculated
analytically based on the reconstructed vector field function.

• curl: a quantity to characterize the infinitesimal rotation of a cell state based on the reconstructed vector field.

– in 2D, curl is a value; in 3D curl, is a matrix.

– if rotation is clockwise, 2D curl has negative value and vice versa

– combinbing with expression of cell cycle markers, curl analysis can help us to reveal whether a cell is
going through a strong cell cycle process.

• divergence: a quantity to characterize local “outgoingness” of a cell – the extent to which there is more of the
field vectors exiting an infinitesimal region of space than entering it.

– positive values means cells is going out to become other cells or cell’s movement to other cell is speeded
up and vice versa.

– divergence analysis can be used to reveal progenitor (source) or a terminal cell state (sink).

• acceleration: the derivative of velocity vector.

– if cell speeds up (normally happen when cells exit cell cycle and start to commit), the acceleration will be
positive and vice versa.

2.7. Zebrafish pigmentation 65

dynamo, Release 0.95.2

– RNA acceleration is a vector like RNA velocity vector so you can actually plot acceleration field like
velocity field (that is why we name our vector flow related plotting functions cell_wise_vectors,
grid_vectors to support plotting both velocity and acceleration field (see below)).

– Here the norm of the acceleration for all PC components in each cells will be calculated and visualized
(like the speed/magnitude of the velocity vector).

• curvature: a quantity to characterize the curviness a cell’s vector field trajectory.

– if a progenitor develops into multiple lineages, some of those paths will have curvature (it is like making a
turn on a crossroad while driving a car).

– genes strongly contribute to the curvature correspond to regulatory genes steering the cell fate

[16]: dyn.tl.cell_velocities(adata, basis='pca')
dyn.vf.VectorField(adata, basis='pca')
dyn.vf.speed(adata, basis='pca')
dyn.vf.curl(adata, basis='umap')
dyn.vf.divergence(adata, basis='pca')
dyn.vf.acceleration(adata, basis='pca')
dyn.vf.curvature(adata, basis='pca')

projecting velocity vector to low dimensional embedding...: 16%| | 651/4181
→˓[00:00<00:01, 3228.03it/s]

Using existing pearson_transition_matrix found in .obsp.

projecting velocity vector to low dimensional embedding...: 100%|| 4181/4181 [00:01
→˓<00:00, 3505.59it/s]
Calculating 2-D curl: 100%|| 4181/4181 [00:00<00:00, 11446.05it/s]
Calculating divergence: 100%|| 4181/4181 [00:00<00:00, 6807.54it/s]
Calculating acceleration: 100%|| 4181/4181 [00:00<00:00, 124851.45it/s]
Calculating acceleration: 100%|| 4181/4181 [00:00<00:00, 166839.99it/s]
Calculating curvature: 100%|| 4181/4181 [00:00<00:00, 48393.99it/s]

2.7.7 Integrative analysis

We can integrate those above quantities to fully characterize the regulatory mechanism during zebrafish pigmentation.

A separate tutorial is needed to fully explore these analyses, but let’s take a quick look at the results. We can see that:

• from cell speed and acceleration, progenitors generally have low speed as it is like a metastable cell state. How-
ever transition of pigment progenitors and proliferating progenitors speeds up after committing to a particular
lineage, for example, iridophore/melanophore/shawnn cell lineage, etc.

• from cell divergence, those progenitors (pigment progenitors and proliferating progenitors) functions like a
source with high divergence while melanophore/iridophores/chromaffin/schawn cells as well as other cell types
functions like a sink with significantly lower divergence.

• from cell curvature, when cell makes cell fate decisions (at the bifurcation point of iridophore and melanophore
lineages or that of the neuron and satellite glia lineages), strong curvature is apparent. Curvature is also artifi-
cially strong when velocity is noisy.

[17]: import matplotlib.pyplot as plt

fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(12,
→˓8))
f1_axes
f1_axes[0, 0] = dyn.pl.cell_wise_vectors(adata, color='speed_pca', pointsize=0.5,
→˓alpha = 0.7, ax=f1_axes[0, 0], quiver_length=6, quiver_size=6, save_show_or_return=
→˓'return') (continues on next page)

66 Chapter 2. Contribution

dynamo, Release 0.95.2

(continued from previous page)

f1_axes[0, 1] = dyn.pl.grid_vectors(adata, color='divergence_pca', ax=f1_axes[0, 1],
→˓quiver_length=12, quiver_size=12, save_show_or_return='return')
f1_axes[1, 0] = dyn.pl.streamline_plot(adata, color='acceleration_pca', ax=f1_axes[1,
→˓0], save_show_or_return='return')
f1_axes[1, 1] = dyn.pl.streamline_plot(adata, color='curvature_pca', ax=f1_axes[1, 1],
→˓ save_show_or_return='return')
plt.show()

Emulate ggplot2 plotting styple with black background, get ready for a cool presentation!!!

[18]: dyn.configuration.set_figure_params('dynamo', background='black')

[19]: fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(12,
→˓8))
f1_axes
f1_axes[0, 0] = dyn.pl.cell_wise_vectors(adata, color='speed_pca', pointsize=0.1,
→˓alpha = 0.7, ax=f1_axes[0, 0], quiver_length=6, quiver_size=6, save_show_or_return=
→˓'return', background='black')
f1_axes[0, 1] = dyn.pl.grid_vectors(adata, color='divergence_pca', ax=f1_axes[0, 1],
→˓quiver_length=12, quiver_size=12, save_show_or_return='return', background='black')
f1_axes[1, 0] = dyn.pl.streamline_plot(adata, color='acceleration_pca', ax=f1_axes[1,
→˓0], save_show_or_return='return', background='black')
f1_axes[1, 1] = dyn.pl.streamline_plot(adata, color='curvature_pca', ax=f1_axes[1, 1],
→˓ save_show_or_return='return', background='black')
plt.show()

2.7. Zebrafish pigmentation 67

dynamo, Release 0.95.2

2.7.8 Animate fate transition

Before we go, let us have some fun with animating cell fate commitment predictions via reconstructed vector field
function. This cool application hopefully will also convince you that vector field reconstruction can enable some
amazing analysis that is hardly imaginable before. With those and many other possibilities in single cell genomics,
the prospect of biology to finally become a discipline as qualitative as physics and mathematics has never been so
promising!

To animate cell fate prediction, we need to first select some progenitor cells as initial cell states.

[20]: progenitor = adata.obs_names[adata.obs.Cell_type.isin(['Proliferating Progenitor',
→˓'Pigment Progenitor'])]
len(progenitor)

[20]: 1194

Then, we need to predict the cell fate trajectory via integrating with the vector field function, starting from those initial
cell states.

[21]: dyn.pd.fate(adata, basis='umap', init_cells=progenitor, interpolation_num=100,
→˓direction='forward',

inverse_transform=False, average=False, cores=3)

[21]: AnnData object with n_obs × n_vars = 4181 × 16940
obs: 'split_id', 'sample', 'Size_Factor', 'condition', 'Cluster', 'Cell_type',

→˓'umap_1', 'umap_2', 'batch', 'nGenes', 'nCounts', 'pMito', 'use_for_pca', 'spliced_
→˓Size_Factor', 'initial_spliced_cell_size', 'unspliced_Size_Factor', 'initial_
→˓unspliced_cell_size', 'initial_cell_size', 'ntr', 'umap_ddhodge_div', 'umap_ddhodge_
→˓potential', 'curl_umap', 'divergence_umap', 'speed_pca', 'divergence_pca',
→˓'acceleration_pca', 'curvature_pca'

(continues on next page)

68 Chapter 2. Contribution

dynamo, Release 0.95.2

(continued from previous page)

var: 'pass_basic_filter', 'score', 'log_m', 'log_cv', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics', 'use_for_transition'

uns: 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_variance_ratio_', 'pca_
→˓fit', 'feature_selection', 'dynamics', 'neighbors', 'umap_fit', 'grid_velocity_umap
→˓', 'VecFld_umap', 'VecFld', 'grid_velocity_pca', 'VecFld_pca', 'curvature_pca',
→˓'fate_umap'

obsm: 'X_pca', 'X', 'X_umap', 'velocity_umap', 'velocity_umap_SparseVFC', 'X_umap_
→˓SparseVFC', 'velocity_pca', 'velocity_pca_SparseVFC', 'X_pca_SparseVFC',
→˓'acceleration_pca'

layers: 'spliced', 'unspliced', 'X_spliced', 'X_unspliced', 'M_u', 'M_uu', 'M_s',
→˓'M_us', 'M_ss', 'velocity_S', 'acceleration'

obsp: 'moments_con', 'connectivities', 'distances', 'pearson_transition_matrix',
→˓'umap_ddhodge'

Furthermore, we need to prepare a matplotlib axes as the background of the animation and then the animated
components from each frame will be plotted on its top. Here I use the topography plot as the background but you
can use other plots if you like.

[22]: %%capture
fig, ax = plt.subplots()
ax = dyn.pl.topography(adata, color='Cell_type', ax=ax, save_show_or_return='return')

The dyn.mv.* module provides functionalities to create necessary components to produce an animation that de-
scribes the estimated speed of a set of cells at each time point, its movement in gene expression space and the long
range trajectory predicted by the reconstructed vector field functions. Thus it provides intuitive visual understanding
of the RNA velocity, speed, acceleration, and cell fate commitment in action!!

[23]: %%capture
instance = dyn.mv.StreamFuncAnim(adata=adata, color='Cell_type', ax=ax)

Lastly, let us embed the animation into our notebook.

Note that here I have to set animation.embed_limit rc parameter to a big value (in MB) to ensure all
frames of the animation will be embedded in this notebook.

[24]: import matplotlib
matplotlib.rcParams['animation.embed_limit'] = 2**128 # Ensure all frames will be
→˓embedded.

from matplotlib import animation
import numpy as np

anim = animation.FuncAnimation(instance.fig, instance.update, init_func=instance.init_
→˓background,

frames=np.arange(100), interval=100, blit=True)
from IPython.core.display import display, HTML
HTML(anim.to_jshtml()) # embedding to jupyter notebook.

[24]: <IPython.core.display.HTML object>

Alternatively, we can directly save the animation as an gif file with the dyn.mv.animate_fates function, using
something like the following:

2.7. Zebrafish pigmentation 69

dynamo, Release 0.95.2

dyn.mv.animate_fates(adata, color='Cell_type', basis='umap', n_steps=100, fig=fig,
→˓ax=ax,

save_show_or_return='save', logspace=True, max_time=None)

[25]: %%capture
fig, ax = plt.subplots()
ax = dyn.pl.topography(adata, color='Cell_type', ax=ax, save_show_or_return='return')
dyn.mv.animate_fates(adata, color='Cell_type', basis='umap', n_steps=100, fig=fig,
→˓ax=ax,

save_show_or_return='save', logspace=True, max_time=None)

2.8 Pancreatic endocrinogenesis

This tutorial uses raw data from scvelo package. Special thanks go to the scvelo team!

[]: # get the latest version from pypi
for other installations approaches, see https://dynamo-release.readthedocs.io/en/
→˓latest/ten_minutes_to_dynamo.html#how-to-install
!pip install dynamo-release --upgrade --quiet

[1]: # from IPython.core.display import display, HTML
display(HTML("<style>.container { width:90% !important; }</style>"))
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

import dynamo as dyn

this is like R’s sessionInfo()

[2]: dyn.get_all_dependencies_version()

package dynamo-release umap-learn anndata cvxopt hdbscan loompy matplotlib \
version 0.95.2 0.4.6 0.7.4 1.2.3 0.8.26 3.0.6 3.3.0

package numba numpy pandas pynndescent python-igraph scikit-learn scipy \
version 0.51.0 1.19.1 1.1.1 0.4.8 0.8.2 0.23.2 1.5.2

package seaborn setuptools statsmodels tqdm trimap numdifftools colorcet
version 0.9.0 49.6.0 0.11.1 4.48.2 1.0.12 0.9.39 2.0.2

[3]: # run dynamo to get RNA velocity

dyn.configuration.set_figure_params('dynamo', background='white')

adata = dyn.sample_data.pancreatic_endocrinogenesis()

dyn.pp.recipe_monocle(adata, n_top_genes=1000, fg_kwargs={'shared_count': 20})

dyn.tl.dynamics(adata, model='stochastic')

dyn.tl.reduceDimension(adata, n_pca_components=30)

dyn.tl.cell_velocities(adata, method='pearson', other_kernels_dict={'transform': 'sqrt
→˓'})

(continues on next page)

70 Chapter 2. Contribution

https://github.com/theislab/scvelo

dynamo, Release 0.95.2

(continued from previous page)

dyn.pl.streamline_plot(adata, color=['clusters'], basis='umap', show_legend='on data',
→˓ show_arrowed_spines=True)

estimating gamma: 100%|| 1000/1000 [00:27<00:00, 36.67it/s]
calculating transition matrix via pearson kernel with sqrt transform.: 100%|| 3696/
→˓3696 [00:04<00:00, 799.84it/s]
projecting velocity vector to low dimensional embedding...: 100%|| 3696/3696 [00:00
→˓<00:00, 4314.30it/s]

<Figure size 600x400 with 0 Axes>

[4]: dyn.pl.phase_portraits(adata, genes=adata.var_names[adata.var.use_for_dynamics][:4],
→˓figsize=(6, 4), color='clusters')

2.8. Pancreatic endocrinogenesis 71

dynamo, Release 0.95.2

[5]: dyn.pl.umap(adata, color=['clusters', 'clusters_coarse', "S_score", "G2M_score"],
→˓ncols=4, alpha=0.1)

[6]: dyn.pl.streamline_plot(adata, color=['clusters'], basis='umap', show_legend='on data')

<Figure size 600x400 with 0 Axes>

72 Chapter 2. Contribution

dynamo, Release 0.95.2

[7]: dyn.pl.cell_wise_vectors(adata, color=['clusters'], basis='umap', show_legend='on data
→˓', quiver_length=6, quiver_size=6, figsize=(8, 6), show_arrowed_spines=False)

<Figure size 800x600 with 0 Axes>

2.8. Pancreatic endocrinogenesis 73

dynamo, Release 0.95.2

[8]: # ok some exciting vector field analysis

you can set `verbose = 1/2/3` to obtain different levels of running information of
→˓vector field reconstruction

dyn.vf.VectorField(adata, basis='umap', pot_curl_div=True) # , M=1000, MaxIter=1000

Constructing diffusion graph from reconstructed vector field: 3696it [00:58, 63.53it/
→˓s]
Calculating 2-D curl: 100%|| 3696/3696 [00:00<00:00, 16788.15it/s]
Calculating divergence: 100%|| 3696/3696 [00:00<00:00, 13627.22it/s]

[9]: dyn.pl.topography(adata, color=['clusters'], basis='umap', background='white',
streamline_color='black', show_legend='on data', terms=("streamline

→˓"))

<Figure size 600x400 with 0 Axes>

74 Chapter 2. Contribution

dynamo, Release 0.95.2

[10]: dyn.pl.topography(adata, basis='umap', background='white', color=['ntr', 'clusters'],
→˓streamline_color='black', show_legend='on data')

[11]: dyn.tl.cell_velocities(adata, basis='pca')
dyn.vf.VectorField(adata, basis='pca')
dyn.vf.speed(adata)
dyn.vf.divergence(adata)
dyn.vf.acceleration(adata)
dyn.vf.curl(adata)

projecting velocity vector to low dimensional embedding...: 10%| | 378/3696
→˓[00:00<00:00, 3769.11it/s]

Using existing pearson_transition_matrix found in .obsp.

projecting velocity vector to low dimensional embedding...: 100%|| 3696/3696 [00:00
→˓<00:00, 4015.84it/s]
Calculating divergence: 100%|| 3696/3696 [00:00<00:00, 7500.08it/s]
Calculating acceleration: 100%|| 3696/3696 [00:00<00:00, 292963.20it/s]
Calculating 2-D curl: 100%|| 3696/3696 [00:00<00:00, 17275.38it/s]

2.8. Pancreatic endocrinogenesis 75

dynamo, Release 0.95.2

[12]: adata

[12]: AnnData object with n_obs × n_vars = 3696 × 27998
obs: 'clusters_coarse', 'clusters', 'S_score', 'G2M_score', 'nGenes', 'nCounts',

→˓'pMito', 'use_for_pca', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'Size_
→˓Factor', 'initial_cell_size', 'unspliced_Size_Factor', 'initial_unspliced_cell_size
→˓', 'ntr', 'cell_cycle_phase', 'umap_ddhodge_div', 'umap_ddhodge_potential', 'curl_
→˓umap', 'divergence_umap', 'speed_umap', 'divergence_pca', 'acceleration_umap'

var: 'highly_variable_genes', 'pass_basic_filter', 'log_m', 'score', 'log_cv',
→˓'use_for_pca', 'ntr', 'beta', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b
→˓', 'gamma_r2', 'gamma_logLL', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0
→˓', 'S0', 'total0', 'use_for_dynamics', 'use_for_transition'

uns: 'clusters_coarse_colors', 'clusters_colors', 'day_colors', 'neighbors', 'pca
→˓', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_variance_ratio_', 'pca_fit',
→˓'feature_selection', 'dynamics', 'grid_velocity_umap', 'VecFld_umap', 'VecFld',
→˓'grid_velocity_pca', 'VecFld_pca'

obsm: 'X_pca', 'X_umap', 'X', 'cell_cycle_scores', 'velocity_umap', 'velocity_
→˓umap_SparseVFC', 'X_umap_SparseVFC', 'velocity_pca', 'velocity_pca_SparseVFC', 'X_
→˓pca_SparseVFC', 'acceleration_umap'

layers: 'spliced', 'unspliced', 'X_spliced', 'X_unspliced', 'M_u', 'M_uu', 'M_s',
→˓'M_us', 'M_ss', 'velocity_S'

obsp: 'distances', 'connectivities', 'moments_con', 'pearson_transition_matrix',
→˓'umap_ddhodge'

this just shows how flexible dynamo’ plotting function can be.

[13]: import matplotlib.pyplot as plt
fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(12,
→˓8))
f1_axes
f1_axes[0, 0] = dyn.pl.cell_wise_vectors(adata, color='umap_ddhodge_potential',
→˓pointsize=0.1, alpha = 0.7, ax=f1_axes[0, 0], quiver_length=6, quiver_size=6, save_
→˓show_or_return='return')
f1_axes[0, 1] = dyn.pl.grid_vectors(adata, color='speed_umap', ax=f1_axes[0, 1],
→˓quiver_length=12, quiver_size=12, save_show_or_return='return')
f1_axes[1, 0] = dyn.pl.streamline_plot(adata, color='divergence_pca', ax=f1_axes[1,
→˓0], save_show_or_return='return')
f1_axes[1, 1] = dyn.pl.streamline_plot(adata, color='acceleration_umap', ax=f1_axes[1,
→˓ 1], save_show_or_return='return')
plt.show()

76 Chapter 2. Contribution

dynamo, Release 0.95.2

[14]: # emulate ggplot2 plotting styple with black background
dyn.configuration.set_figure_params('dynamo', background='black')

[15]: fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True, figsize=(12,
→˓8))
f1_axes
f1_axes[0, 0] = dyn.pl.cell_wise_vectors(adata, color='umap_ddhodge_potential',
→˓pointsize=0.1, alpha = 0.7, ax=f1_axes[0, 0], quiver_length=6, quiver_size=6, save_
→˓show_or_return='return', background='black')
f1_axes[0, 1] = dyn.pl.grid_vectors(adata, color='speed_umap', ax=f1_axes[0, 1],
→˓quiver_length=12, quiver_size=12, save_show_or_return='return', background='black')
f1_axes[1, 0] = dyn.pl.streamline_plot(adata, color='divergence_pca', ax=f1_axes[1,
→˓0], save_show_or_return='return', background='black')
f1_axes[1, 1] = dyn.pl.streamline_plot(adata, color='acceleration_umap', ax=f1_axes[1,
→˓ 1], save_show_or_return='return', background='black')
plt.show()

2.8. Pancreatic endocrinogenesis 77

dynamo, Release 0.95.2

[16]: progenitor = adata.obs_names[adata.obs.clusters.isin(['Ductal'])]
len(progenitor)

[16]: 916

[17]: import numpy as np
dyn.pd.fate(adata, basis='umap', init_cells=np.random.choice(progenitor, 100),
→˓interpolation_num=100, direction='forward',

inverse_transform=False, average=False, cores=3)

[17]: AnnData object with n_obs × n_vars = 3696 × 27998
obs: 'clusters_coarse', 'clusters', 'S_score', 'G2M_score', 'nGenes', 'nCounts',

→˓'pMito', 'use_for_pca', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'Size_
→˓Factor', 'initial_cell_size', 'unspliced_Size_Factor', 'initial_unspliced_cell_size
→˓', 'ntr', 'cell_cycle_phase', 'umap_ddhodge_div', 'umap_ddhodge_potential', 'curl_
→˓umap', 'divergence_umap', 'speed_umap', 'divergence_pca', 'acceleration_umap'

var: 'highly_variable_genes', 'pass_basic_filter', 'log_m', 'score', 'log_cv',
→˓'use_for_pca', 'ntr', 'beta', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b
→˓', 'gamma_r2', 'gamma_logLL', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0
→˓', 'S0', 'total0', 'use_for_dynamics', 'use_for_transition'

uns: 'clusters_coarse_colors', 'clusters_colors', 'day_colors', 'neighbors', 'pca
→˓', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_variance_ratio_', 'pca_fit',
→˓'feature_selection', 'dynamics', 'grid_velocity_umap', 'VecFld_umap', 'VecFld',
→˓'grid_velocity_pca', 'VecFld_pca', 'fate_umap'

obsm: 'X_pca', 'X_umap', 'X', 'cell_cycle_scores', 'velocity_umap', 'velocity_
→˓umap_SparseVFC', 'X_umap_SparseVFC', 'velocity_pca', 'velocity_pca_SparseVFC', 'X_
→˓pca_SparseVFC', 'acceleration_umap'

(continues on next page)

78 Chapter 2. Contribution

dynamo, Release 0.95.2

(continued from previous page)

layers: 'spliced', 'unspliced', 'X_spliced', 'X_unspliced', 'M_u', 'M_uu', 'M_s',
→˓'M_us', 'M_ss', 'velocity_S'

obsp: 'distances', 'connectivities', 'moments_con', 'pearson_transition_matrix',
→˓'umap_ddhodge'

[18]: %%capture
fig, ax = plt.subplots()
ax = dyn.pl.topography(adata, color='clusters', ax=ax, save_show_or_return='return')

[19]: %%capture
instance = dyn.mv.StreamFuncAnim(adata=adata, ax=ax, color='clusters')

[20]: import matplotlib
matplotlib.rcParams['animation.embed_limit'] = 2**128 # Ensure all frames will be
→˓embedded.

from matplotlib import animation
import numpy as np

anim = animation.FuncAnimation(instance.fig, instance.update, init_func=instance.init_
→˓background,

frames=np.arange(100), interval=100, blit=True)
from IPython.core.display import display, HTML
HTML(anim.to_jshtml()) # embedding to jupyter notebook.

[20]: <IPython.core.display.HTML object>

[21]: %%capture
fig, ax = plt.subplots()
ax = dyn.pl.topography(adata, color='clusters', ax=ax, save_show_or_return='return')
dyn.mv.animate_fates(adata, color='clusters', basis='umap', n_steps=200, fig=fig,
→˓ax=ax,

save_show_or_return='save', logspace=True, max_time=None, save_
→˓kwargs={"filename": 'pancreas.gif'})

2.9 Dentate gyrus dataset

This tutorial uses raw data from scvelo package. Special thanks go to the scvelo team!

[]: # get the latest version from pypi
for other installations approaches, see https://dynamo-release.readthedocs.io/en/
→˓latest/ten_minutes_to_dynamo.html#how-to-install
!pip install dynamo-release --upgrade --quiet

[1]: # from IPython.core.display import display, HTML
display(HTML("<style>.container { width:90% !important; }</style>"))
%matplotlib inline

import warnings
warnings.filterwarnings('ignore')

(continues on next page)

2.9. Dentate gyrus dataset 79

https://github.com/theislab/scvelo

dynamo, Release 0.95.2

(continued from previous page)

import dynamo as dyn

dyn.get_all_dependencies_version()

package dynamo-release umap-learn anndata cvxopt hdbscan loompy matplotlib \
version 0.95.2 0.4.6 0.7.4 1.2.3 0.8.26 3.0.6 3.3.0

package numba numpy pandas pynndescent python-igraph scikit-learn scipy \
version 0.51.0 1.19.1 1.1.1 0.4.8 0.8.2 0.23.2 1.5.2

package seaborn setuptools statsmodels tqdm trimap numdifftools colorcet
version 0.9.0 49.6.0 0.11.1 4.48.2 1.0.12 0.9.39 2.0.2

[2]: # emulate ggplot2 plotting styple with white background
dyn.configuration.set_figure_params('dynamo', background='white')

[3]: adata = dyn.sample_data.DentateGyrus_scvelo()

adata.obsm['X_umap_ori'] = adata.obsm['X_umap'].copy()

[4]: dyn.pl.show_fraction(adata)
dyn.pl.basic_stats(adata)

[5]: dyn.pp.recipe_monocle(adata, n_top_genes=2000, fg_kwargs={'shared_count': 30})

[5]: AnnData object with n_obs × n_vars = 2930 × 13913
obs: 'clusters', 'age(days)', 'clusters_enlarged', 'nGenes', 'nCounts', 'pMito',

→˓'use_for_pca', 'unspliced_Size_Factor', 'initial_unspliced_cell_size', 'Size_Factor
→˓', 'initial_cell_size', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'ntr',
→˓'cell_cycle_phase'

var: 'pass_basic_filter', 'log_m', 'log_cv', 'score', 'use_for_pca', 'ntr'
(continues on next page)

80 Chapter 2. Contribution

dynamo, Release 0.95.2

(continued from previous page)

uns: 'clusters_colors', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_
→˓variance_ratio_', 'pca_fit', 'feature_selection'

obsm: 'X_umap', 'X_umap_ori', 'X_pca', 'X', 'cell_cycle_scores'
layers: 'ambiguous', 'spliced', 'unspliced', 'X_unspliced', 'X_spliced'

[6]: dyn.pl.variance_explained(adata)
dyn.pl.feature_genes(adata)

[7]: dyn.tl.dynamics(adata, model='stochastic', cores=3)
or dyn.tl.dynamics(adata, model='deterministic')
or dyn.tl.dynamics(adata, model='stochastic', est_method='negbin')

[7]: AnnData object with n_obs × n_vars = 2930 × 13913
obs: 'clusters', 'age(days)', 'clusters_enlarged', 'nGenes', 'nCounts', 'pMito',

→˓'use_for_pca', 'unspliced_Size_Factor', 'initial_unspliced_cell_size', 'Size_Factor
→˓', 'initial_cell_size', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'ntr',
→˓'cell_cycle_phase'

(continues on next page)

2.9. Dentate gyrus dataset 81

dynamo, Release 0.95.2

(continued from previous page)

var: 'pass_basic_filter', 'log_m', 'log_cv', 'score', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics'

uns: 'clusters_colors', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_
→˓variance_ratio_', 'pca_fit', 'feature_selection', 'dynamics'

obsm: 'X_umap', 'X_umap_ori', 'X_pca', 'X', 'cell_cycle_scores'
layers: 'ambiguous', 'spliced', 'unspliced', 'X_unspliced', 'X_spliced', 'M_u',

→˓'M_uu', 'M_s', 'M_us', 'M_ss', 'velocity_S'
obsp: 'moments_con'

[8]: # enforce recalculating the umap embedding. By default dynamo will avoid
→˓recalculation if a reduced dimension space exists.
dyn.tl.reduceDimension(adata, enforce=True)

[8]: AnnData object with n_obs × n_vars = 2930 × 13913
obs: 'clusters', 'age(days)', 'clusters_enlarged', 'nGenes', 'nCounts', 'pMito',

→˓'use_for_pca', 'unspliced_Size_Factor', 'initial_unspliced_cell_size', 'Size_Factor
→˓', 'initial_cell_size', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'ntr',
→˓'cell_cycle_phase'

var: 'pass_basic_filter', 'log_m', 'log_cv', 'score', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics'

uns: 'clusters_colors', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_
→˓variance_ratio_', 'pca_fit', 'feature_selection', 'dynamics', 'neighbors', 'umap_fit
→˓'

obsm: 'X_umap', 'X_umap_ori', 'X_pca', 'X', 'cell_cycle_scores'
layers: 'ambiguous', 'spliced', 'unspliced', 'X_unspliced', 'X_spliced', 'M_u',

→˓'M_uu', 'M_s', 'M_us', 'M_ss', 'velocity_S'
obsp: 'moments_con', 'connectivities', 'distances'

[9]: dyn.tl.cell_velocities(adata)

calculating transition matrix via pearson kernel with sqrt transform.: 100%|| 2930/
→˓2930 [00:05<00:00, 498.05it/s]
projecting velocity vector to low dimensional embedding...: 100%|| 2930/2930 [00:00
→˓<00:00, 3557.37it/s]

[9]: AnnData object with n_obs × n_vars = 2930 × 13913
obs: 'clusters', 'age(days)', 'clusters_enlarged', 'nGenes', 'nCounts', 'pMito',

→˓'use_for_pca', 'unspliced_Size_Factor', 'initial_unspliced_cell_size', 'Size_Factor
→˓', 'initial_cell_size', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'ntr',
→˓'cell_cycle_phase'

var: 'pass_basic_filter', 'log_m', 'log_cv', 'score', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics', 'use_for_transition'

uns: 'clusters_colors', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_
→˓variance_ratio_', 'pca_fit', 'feature_selection', 'dynamics', 'neighbors', 'umap_fit
→˓', 'grid_velocity_umap'

obsm: 'X_umap', 'X_umap_ori', 'X_pca', 'X', 'cell_cycle_scores', 'velocity_umap'
layers: 'ambiguous', 'spliced', 'unspliced', 'X_unspliced', 'X_spliced', 'M_u',

→˓'M_uu', 'M_s', 'M_us', 'M_ss', 'velocity_S'
obsp: 'moments_con', 'connectivities', 'distances', 'pearson_transition_matrix'

82 Chapter 2. Contribution

dynamo, Release 0.95.2

[10]: DentateGyrus_genes = ["Tnc", "Gfap", "Tac2", "Pdgfra", "Igfbpl1", 'Ptprn', "Sema3c",
→˓"Neurod6", "Stmn2", "Sema5a", "C1ql3", "Cpne4", "Cck"]

dyn.pl.phase_portraits(adata, genes=DentateGyrus_genes, ncols=3, figsize=(3, 3),
→˓basis='pca', show_quiver=False)

2.9. Dentate gyrus dataset 83

dynamo, Release 0.95.2

84 Chapter 2. Contribution

dynamo, Release 0.95.2

[11]: dyn.pl.cell_wise_vectors(adata, color=['clusters'], quiver_size=6, quiver_length=6,
→˓figsize=(6, 5), pointsize=0.1) # ['GRIA3', 'LINC00982', 'AFF2']

<Figure size 600x500 with 0 Axes>

[12]: dyn.pl.grid_vectors(adata, color=['clusters'], method='gaussian')

<Figure size 600x400 with 0 Axes>

2.9. Dentate gyrus dataset 85

dynamo, Release 0.95.2

[13]: dyn.pl.streamline_plot(adata, color=['clusters'], basis='umap', density=1, background=
→˓'white',s_kwargs_dict={"alpha": 0.05})

<Figure size 600x400 with 0 Axes>

86 Chapter 2. Contribution

dynamo, Release 0.95.2

[14]: dyn.pl.streamline_plot(adata, color=['clusters'], basis='umap_ori', density=1,
→˓background='white',s_kwargs_dict={"alpha": 0.05})

projecting velocity vector to low dimensional embedding...: 27%| | 784/2930
→˓[00:00<00:00, 3801.14it/s]

Using existing pearson_transition_matrix found in .obsp.

projecting velocity vector to low dimensional embedding...: 100%|| 2930/2930 [00:00
→˓<00:00, 4048.10it/s]

<Figure size 600x400 with 0 Axes>

2.9. Dentate gyrus dataset 87

dynamo, Release 0.95.2

[15]: # you can set `verbose = 1/2/3` to obtain different levels of running information of
→˓vector field reconstruction
dyn.vf.VectorField(adata, basis='umap_ori', dims=[0, 1])

[16]: dyn.pl.topography(adata, color=['clusters', 'Tnc'], basis='umap_ori', ncols=2)

[17]: dyn.vf.VectorField(adata, basis='umap_ori', dims=[0, 1], pot_curl_div=True)

88 Chapter 2. Contribution

dynamo, Release 0.95.2

[18]: dyn.ext.ddhodge(adata, basis='umap_ori')

Constructing diffusion graph from reconstructed vector field: 2930it [01:57, 24.83it/
→˓s]

[19]: adata

[19]: AnnData object with n_obs × n_vars = 2930 × 13913
obs: 'clusters', 'age(days)', 'clusters_enlarged', 'nGenes', 'nCounts', 'pMito',

→˓'use_for_pca', 'unspliced_Size_Factor', 'initial_unspliced_cell_size', 'Size_Factor
→˓', 'initial_cell_size', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'ntr',
→˓'cell_cycle_phase', 'umap_ori_ddhodge_div', 'umap_ori_ddhodge_potential'

var: 'pass_basic_filter', 'log_m', 'log_cv', 'score', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics', 'use_for_transition'

uns: 'clusters_colors', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_
→˓variance_ratio_', 'pca_fit', 'feature_selection', 'dynamics', 'neighbors', 'umap_fit
→˓', 'grid_velocity_umap', 'grid_velocity_umap_ori', 'VecFld_umap_ori', 'VecFld'

obsm: 'X_umap', 'X_umap_ori', 'X_pca', 'X', 'cell_cycle_scores', 'velocity_umap',
→˓'velocity_umap_ori', 'velocity_umap_ori_SparseVFC', 'X_umap_ori_SparseVFC'

layers: 'ambiguous', 'spliced', 'unspliced', 'X_unspliced', 'X_spliced', 'M_u',
→˓'M_uu', 'M_s', 'M_us', 'M_ss', 'velocity_S'

obsp: 'moments_con', 'connectivities', 'distances', 'pearson_transition_matrix',
→˓'umap_ori_ddhodge'

[20]: dyn.pl.topography(adata, color=['clusters', 'umap_ori_ddhodge_div', 'umap_ori_ddhodge_
→˓potential'],

basis='umap_ori', ncols=3, frontier=True)

[21]: # emulate ggplot2 plotting styple with black background
dyn.configuration.set_figure_params('dynamo', background='black')

[22]:
dyn.pl.phase_portraits(adata, genes=DentateGyrus_genes, ncols=3, figsize=(6, 4),
→˓basis='umap_ori', show_quiver=False)

dyn.pl.cell_wise_vectors(adata, color=['clusters'], basis='umap_ori', pointsize=0.1,
→˓quiver_size=4, quiver_length=4, background='black') # ['GRIA3', 'LINC00982', 'AFF2']

dyn.pl.grid_vectors(adata, color=['clusters'], basis='umap_ori', method='gaussian',
→˓background='black')

dyn.pl.streamline_plot(adata, color=['clusters'], basis='umap_ori', density=2,
→˓background='black') (continues on next page)

2.9. Dentate gyrus dataset 89

dynamo, Release 0.95.2

(continued from previous page)

dyn.pl.topography(adata, color=['clusters', 'Tnc'], basis='umap_ori', ncols=2,
→˓background='black')

<Figure size 600x400 with 0 Axes>

90 Chapter 2. Contribution

dynamo, Release 0.95.2

<Figure size 600x400 with 0 Axes>

<Figure size 600x400 with 0 Axes>

2.9. Dentate gyrus dataset 91

dynamo, Release 0.95.2

[23]: progenitor = adata.obs_names[adata.obs.clusters.isin(['nIPC', 'Neuroblast'])]
len(progenitor)

[23]: 436

[24]: dyn.pd.fate(adata, basis='umap_ori', init_cells=progenitor, interpolation_num=100,
→˓direction='forward',

inverse_transform=False, average=False, cores=3)

[24]: AnnData object with n_obs × n_vars = 2930 × 13913
obs: 'clusters', 'age(days)', 'clusters_enlarged', 'nGenes', 'nCounts', 'pMito',

→˓'use_for_pca', 'unspliced_Size_Factor', 'initial_unspliced_cell_size', 'Size_Factor
→˓', 'initial_cell_size', 'spliced_Size_Factor', 'initial_spliced_cell_size', 'ntr',
→˓'cell_cycle_phase', 'umap_ori_ddhodge_div', 'umap_ori_ddhodge_potential'(continues on next page)

92 Chapter 2. Contribution

dynamo, Release 0.95.2

(continued from previous page)

var: 'pass_basic_filter', 'log_m', 'log_cv', 'score', 'use_for_pca', 'ntr', 'beta
→˓', 'gamma', 'half_life', 'alpha_b', 'alpha_r2', 'gamma_b', 'gamma_r2', 'gamma_logLL
→˓', 'delta_b', 'delta_r2', 'uu0', 'ul0', 'su0', 'sl0', 'U0', 'S0', 'total0', 'use_
→˓for_dynamics', 'use_for_transition'

uns: 'clusters_colors', 'velocyto_SVR', 'pp_norm_method', 'PCs', 'explained_
→˓variance_ratio_', 'pca_fit', 'feature_selection', 'dynamics', 'neighbors', 'umap_fit
→˓', 'grid_velocity_umap', 'grid_velocity_umap_ori', 'VecFld_umap_ori', 'VecFld',
→˓'fate_umap_ori'

obsm: 'X_umap', 'X_umap_ori', 'X_pca', 'X', 'cell_cycle_scores', 'velocity_umap',
→˓'velocity_umap_ori', 'velocity_umap_ori_SparseVFC', 'X_umap_ori_SparseVFC'

layers: 'ambiguous', 'spliced', 'unspliced', 'X_unspliced', 'X_spliced', 'M_u',
→˓'M_uu', 'M_s', 'M_us', 'M_ss', 'velocity_S'

obsp: 'moments_con', 'connectivities', 'distances', 'pearson_transition_matrix',
→˓'umap_ori_ddhodge'

[25]: %%capture
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax = dyn.pl.topography(adata, color='clusters', ax=ax, save_show_or_return='return',
→˓basis='umap_ori')

[26]: %%capture
instance = dyn.mv.StreamFuncAnim(adata=adata, ax=ax, basis='umap_ori', color='clusters
→˓')

[27]: from matplotlib import animation
import numpy as np

anim = animation.FuncAnimation(instance.fig, instance.update, init_func=instance.init_
→˓background,

frames=np.arange(100), interval=100, blit=True)
from IPython.core.display import display, HTML
HTML(anim.to_jshtml()) # embedding to jupyter notebook.

[27]: <IPython.core.display.HTML object>

[28]: %%capture
fig, ax = plt.subplots()
ax = dyn.pl.topography(adata, color='clusters', basis='umap_ori', ax=ax, save_show_or_
→˓return='return')
dyn.mv.animate_fates(adata, color='clusters', basis='umap_ori', n_steps=100, fig=fig,
→˓ax=ax,

save_show_or_return='save', logspace=True, max_time=None, save_
→˓kwargs={"filename": 'dentategyrus.gif'})

2.9. Dentate gyrus dataset 93

dynamo, Release 0.95.2

94 Chapter 2. Contribution

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

95

dynamo, Release 0.95.2

96 Chapter 3. Indices and tables

BIBLIOGRAPHY

[Qiu19] Qi Qiu, Peng Hu, et al. (2019), Massively parallel, time-resolved single-cell RNA sequencing with scNT-
Seq, Biorxiv.

[Qi19] Xiaojie Qiu et al. (2019), Mapping vector field of single cells, Biorxiv.

[Qiu18] Xiaojie Qiu et al. (2019), Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expres-
sion Dynamics Using Scribes, Cell systems.

[Qiu17] Xiaojie Qiu et al. (2017), Reversed graph embedding resolves complex single-cell trajectories, Nature
methods.

[Trapnell14] Cole Trapnell et al. (2014), The dynamics and regulators of cell fate decisions are revealed by pseu-
dotemporal ordering of single cells, Nature Biotechnology.

[Bergen19] Volker Bergen et al. (2020), Generalizing RNA velocity to transient cell states through dynamical model-
ing, Nature biotechnology.

[Melsted19] Páll Melsted et al. (2019), Modular and efficient pre-processing of single-cell RNA-seq, Biorxiv.

[Gorin19] Gennady Gorin et al. (2019), RNA velocity and protein acceleration from single-cell multiomics experi-
ments, Genome biology.

[Manno18] La Manno et al. (2018), RNA velocity of single cells, Nature.

[Wolf18] Wolf et al. (2018), Scanpy: large-scale single-cell gene expression data analysis, Genome Biology.

97

https://www.biorxiv.org/content/10.1101/2019.12.19.882050v2
https://www.biorxiv.org/content/10.1101/696724v1.full
https://www.sciencedirect.com/science/article/abs/pii/S2405471220300363
https://www.nature.com/articles/nmeth.4402.pdf?origin=ppub
https://www.nature.com/articles/nmeth.4402.pdf?origin=ppub
https://www.nature.com/articles/nbt.2859
https://www.nature.com/articles/s41587-020-0591-3
https://www.biorxiv.org/content/10.1101/673285v1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-1945-3
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1186/s13059-017-1382-0

dynamo, Release 0.95.2

98 Bibliography

PYTHON MODULE INDEX

d
dynamo, 12

99

dynamo, Release 0.95.2

100 Python Module Index

INDEX

A
animate_fates() (in module dynamo.mv), 24

C
cleanup() (in module dynamo), 31
concatenate_data() (dy-

namo.est.csc.ss_estimation method), 33
csc.ss_estimation (class in dynamo.est), 32
csc.velocity (class in dynamo.est), 36

D
ddhodge() (in module dynamo.ext), 26
dynamo

module, 12

E
evaluate() (dynamo.vf.vectorfield method), 50

F
fate() (in module dynamo.pd), 18
fate_bias() (in module dynamo.pd), 19
fit() (dynamo.est.csc.ss_estimation method), 33
fit() (dynamo.vf.Pot method), 51
fit() (dynamo.vf.vectorfield method), 49
fit_alpha_oneshot() (dy-

namo.est.csc.ss_estimation method), 33
fit_beta_gamma_lsq() (dy-

namo.est.csc.ss_estimation method), 34
fit_gamma_nosplicing_lsq() (dy-

namo.est.csc.ss_estimation method), 34
fit_gamma_steady_state() (dy-

namo.est.csc.ss_estimation method), 34
fit_gamma_stochastic() (dy-

namo.est.csc.ss_estimation method), 35
fit_lsq() (dynamo.est.tsc.Estimation_DeterministicDeg

method), 39
fit_lsq() (dynamo.est.tsc.Estimation_DeterministicDegNosp

method), 40
fit_lsq() (dynamo.est.tsc.Estimation_DeterministicKin

method), 42
fit_lsq() (dynamo.est.tsc.Estimation_DeterministicKinNosp

method), 41

fit_lsq() (dynamo.est.tsc.Estimation_MomentDeg
method), 43

fit_lsq() (dynamo.est.tsc.Estimation_MomentDegNosp
method), 43

fit_lsq() (dynamo.est.tsc.Estimation_MomentKin
method), 44

fit_lsq() (dynamo.est.tsc.Estimation_MomentKinNosp
method), 45

fit_lsq() (dynamo.est.tsc.kinetic_estimation
method), 38

fit_lsq() (dynamo.est.tsc.Lambda_NoSwitching
method), 46

fit_lsq() (dynamo.est.tsc.Mixture_KinDeg_NoSwitching
method), 47

G
get_all_dependencies_version() (in module

dynamo), 31
get_exist_data_names() (dy-

namo.est.csc.ss_estimation method), 36
get_Jacobian() (dynamo.vf.vectorfield method), 49
get_n_cells() (dynamo.est.csc.velocity method), 37
get_n_genes() (dynamo.est.csc.ss_estimation

method), 36
get_n_genes() (dynamo.est.csc.velocity method), 37

M
module

dynamo, 12
mutual_inform() (in module dynamo.ext), 29

P
Pot (class in dynamo.vf), 50

R
read() (in module dynamo), 12
read_h5ad() (in module dynamo), 13
read_loom() (in module dynamo), 13

S
scifate_glmnet() (in module dynamo.ext), 29
scribe() (in module dynamo.ext), 27

101

dynamo, Release 0.95.2

set_figure_params() (in module dy-
namo.configuration), 31

set_parameter() (dynamo.est.csc.ss_estimation
method), 36

set_pub_style() (in module dy-
namo.configuration), 32

solve_alpha_mix_std_stm() (dy-
namo.est.csc.ss_estimation method), 36

state_graph() (in module dynamo.pd), 21
StreamFuncAnim (class in dynamo.mv), 52

T
test_chi2() (dynamo.est.tsc.Estimation_DeterministicDeg

method), 39
test_chi2() (dynamo.est.tsc.Estimation_DeterministicDegNosp

method), 40
test_chi2() (dynamo.est.tsc.Estimation_DeterministicKin

method), 42
test_chi2() (dynamo.est.tsc.Estimation_DeterministicKinNosp

method), 41
test_chi2() (dynamo.est.tsc.Estimation_MomentDeg

method), 43
test_chi2() (dynamo.est.tsc.Estimation_MomentDegNosp

method), 44
test_chi2() (dynamo.est.tsc.Estimation_MomentKin

method), 45
test_chi2() (dynamo.est.tsc.Estimation_MomentKinNosp

method), 46
test_chi2() (dynamo.est.tsc.kinetic_estimation

method), 38
test_chi2() (dynamo.est.tsc.Lambda_NoSwitching

method), 47
test_chi2() (dynamo.est.tsc.Mixture_KinDeg_NoSwitching

method), 48
tsc.Estimation_DeterministicDeg (class in

dynamo.est), 39
tsc.Estimation_DeterministicDegNosp

(class in dynamo.est), 40
tsc.Estimation_DeterministicKin (class in

dynamo.est), 41
tsc.Estimation_DeterministicKinNosp

(class in dynamo.est), 41
tsc.Estimation_MomentDeg (class in dy-

namo.est), 42
tsc.Estimation_MomentDegNosp (class in dy-

namo.est), 43
tsc.Estimation_MomentKin (class in dy-

namo.est), 44
tsc.Estimation_MomentKinNosp (class in dy-

namo.est), 45
tsc.kinetic_estimation (class in dynamo.est),

38
tsc.Lambda_NoSwitching (class in dynamo.est),

46

tsc.Mixture_KinDeg_NoSwitching (class in dy-
namo.est), 47

U
update() (dynamo.mv.StreamFuncAnim method), 53

V
vectorfield (class in dynamo.vf), 48
vel_p() (dynamo.est.csc.velocity method), 37
vel_s() (dynamo.est.csc.velocity method), 37
vel_u() (dynamo.est.csc.velocity method), 37

102 Index

	Discussion
	Contribution
	10 minutes to dynamo
	Why dynamo
	How to install
	Architecture of dynamo
	Typical workflow
	Compatibility

	API
	Data IO
	Preprocessing (pp)
	Estimation (est)
	Tools (tl)
	Vector field (vf)
	Prediction (pd)
	Plotting (pl)
	Moive (mv)
	Simulation (sim)
	External (ext)
	Utilities

	Class
	Estimation
	Vector field
	Movie

	Release notes
	Reference
	Acknowledgement
	Zebrafish pigmentation
	Load data
	RNA velocity with parallelism
	Velocity projection
	Reconstruct vector field
	Characterize vector field topology
	Beyond RNA velocity
	Integrative analysis
	Animate fate transition

	Pancreatic endocrinogenesis
	Dentate gyrus dataset

	Indices and tables
	Bibliography
	Python Module Index
	Index

