dynamo.pp.pca_monocle
- dynamo.pp.pca_monocle(adata, X_data=None, n_pca_components=30, pca_key='X', pcs_key='PCs', genes_to_append=None, layer=None, return_all=False)[source]
Perform PCA reduction for monocle recipe.
- Parameters:
adata (
AnnData
) – an AnnData object.X_data (
Optional
[ndarray
]) – the data to perform dimension reduction on. Defaults to None.n_pca_components (
int
) – number of PCA components reduced to. Defaults to 30.pca_key (
str
) – the key to store the reduced data. Defaults to “X”.pcs_key (
str
) – the key to store the principle axes in feature space. Defaults to “PCs”.genes_to_append (
Optional
[List
[str
]]) – a list of genes should be inspected. Defaults to None.layer (
Union
[List
[str
],str
,None
]) – the layer(s) to perform dimension reduction on. Would be overrided by X_data. Defaults to None.return_all (
bool
) – whether to return the PCA fit model and the reduced array together with the updated AnnData object. Defaults to False.
- Raises:
ValueError – layer provided is not invalid.
ValueError – list of genes to append is invalid.
- Return type:
Union
[AnnData
,Tuple
[AnnData
,Union
[PCA
,TruncatedSVD
],ndarray
]]- Returns:
The the updated AnnData object with reduced data if return_all is False. Otherwise, a tuple (adata, fit, X_pca), where adata is the updated AnnData object, fit is the fit model for dimension reduction, and X_pca is the reduced array, will be returned.