Source code for dynamo.tools.cell_velocities

from typing import Dict, List, Optional, Tuple, Union

try:
    from typing import Literal
except ImportError:
    from typing_extensions import Literal

import numpy as np
import scipy
import scipy.sparse as sp
from anndata import AnnData
from numba import jit
from sklearn.decomposition import PCA
from sklearn.utils import sparsefuncs

from ..configuration import DKM
from ..dynamo_logger import LoggerManager, main_info, main_warning
from ..utils import areinstance, expr_to_pca
from .connectivity import (
    adj_to_knn,
    check_and_recompute_neighbors,
    construct_mapper_umap,
    generate_neighbor_keys,
)
from .dimension_reduction import reduceDimension
from .graph_calculus import calc_gaussian_weight, fp_operator, graphize_velocity
from .Markov import ContinuousTimeMarkovChain, KernelMarkovChain, velocity_on_grid
from .metric_velocity import gene_wise_confidence

# dynamo logger related
from .utils import (
    einsum_correlation,
    get_ekey_vkey_from_adata,
    get_finite_inds,
    get_mapper_inverse,
    get_neighbor_indices,
    index_gene,
    log1p_,
    projection_with_transition_matrix,
    set_transition_genes,
    split_velocity_graph,
    update_dict,
)


[docs]def cell_velocities( adata: AnnData, ekey: Union[str, None] = None, vkey: Union[str, None] = None, X: Union[np.array, sp.csr_matrix, None] = None, V: Union[np.array, sp.csr_matrix, None] = None, X_embedding: Union[np.ndarray, None] = None, transition_matrix: Union[np.ndarray, sp.csr_matrix, None] = None, use_mnn: bool = False, n_pca_components: Union[int, None] = None, transition_genes: Union[str, List[str], List[bool], None] = None, min_r2: Union[float, None] = None, min_alpha: Union[float, None] = None, min_gamma: Union[float, None] = None, min_delta: Union[float, None] = None, basis: str = "umap", neighbor_key_prefix: str = "", adj_key: str = "distances", add_transition_key: str = None, add_velocity_key: str = None, n_neighbors: int = 30, method: Literal["kmc", "fp", "cosine", "pearson", "transform"] = "pearson", neg_cells_trick: bool = True, calc_rnd_vel: bool = False, xy_grid_nums: Tuple[int] = (50, 50), correct_density: bool = True, scale: bool = True, sample_fraction: Union[float, None] = None, random_seed: int = 19491001, enforce: bool = False, preserve_len: bool = False, **kernel_kwargs, ) -> AnnData: """Project high dimensional velocity vectors onto given low dimensional embeddings, and/or compute cell transition probabilities. Args: adata: An AnnData object. ekey: The dictionary key that corresponds to the gene expression in the layer attribute. If set to be None, ekey will be automatically detected from the adata object. Defaults to None. vkey: The dictionary key that corresponds to the estimated velocity values in the layers attribute. If set to be None, vkey will be automatically detected from the adata object. Defaults to None. X: The expression states of single cells (or expression states in reduced dimension, like pca, of single cells). Defaults to None. V: The RNA velocity of single cells (or velocity estimates projected to reduced dimension, like pca, of single cells). Note that X, V need to have the exact dimensionalities. Defaults to None. X_embedding: The low expression reduced space (pca, umap, tsne, etc.) of single cells that RNA velocity will be projected onto. Note X_embedding, X and V has to have the same cell/sample dimension and X_embedding should have less feature dimension comparing that of X or V. Defaults to None. transition_matrix: The set of genes used for projection of high dimensional velocity vectors. If None, transition genes are determined based on the R2 of linear regression on phase planes. The argument can be either a dictionary key of .var, a list of gene names, or a list of booleans of length .n_vars. Defaults to None. use_mnn: Whether to use mutual nearest neighbors for projecting the high dimensional velocity vectors. By default, we don't use the mutual nearest neighbors. Mutual nearest neighbors are calculated from nearest neighbors across different layers, which accounts for cases where, for example, the cells from spliced expression may be nearest neighbors but far from nearest neighbors on unspliced data. Using mnn assumes your data from different layers are reliable (otherwise it will destroy real signals). Defaults to False. n_pca_components: The number of pca components to project the high dimensional X, V before calculating transition matrix for velocity visualization. By default, it is None and if method is `kmc`, n_pca_components will be reset to 30; otherwise use all high dimensional data for velocity projection. Defaults to None. transition_genes: The set of genes used for projection of high dimensional velocity vectors. If None, transition genes are determined based on the R2 of linear regression on phase planes. The argument can be either a dictionary key of .var, a list of gene names, or a list of booleans of length .n_vars. Defaults to None. min_r2: The minimal value of r-squared of the parameter fits for selecting transition genes. Defaults to None. min_alpha: The minimal value of alpha kinetic parameter for selecting transition genes. Defaults to None. min_gamma: The minimal value of gamma kinetic parameter for selecting transition genes. Defaults to None. min_delta: The minimal value of delta kinetic parameter for selecting transition genes. Defaults to None. basis: The dictionary key that corresponds to the reduced dimension in `.obsm` attribute. Can be `X_spliced_umap` or `X_total_umap`, etc. Defaults to "umap". neighbor_key_prefix: The dictionary key prefix in .uns. Connectivity and distance matrix keys are also generate with this prefix in adata.obsp. Defaults to "". adj_key: The dictionary key for the adjacency matrix of the nearest neighbor graph in .obsp. Defaults to "distances". add_transition_key: The dictionary key that will be used for storing the transition matrix in .obsp. Defaults to None. add_velocity_key: The dictionary key that will be used for storing the low dimensional velocity projection matrix in .obsm. Defaults to None. n_neighbors: The number of neighbors to be used to calculate velocity projection. Defaults to 30. method: The method to calculate the transition matrix and project high dimensional vector to low dimension, either `kmc`, `fp`, `cosine`, `pearson`, or `transform`. "kmc" is our new approach to learn the transition matrix via diffusion approximation or an Itô kernel. "cosine" or "pearson" are the methods used in the original RNA velocity paper or the scvelo paper (Note that scVelo implementation actually centers both dX and V, so its cosine kernel is equivalent to pearson correlation kernel, but we also provide the raw cosine kernel). "kmc" option is arguable better than "correlation" or "cosine" as it not only considers the correlation but also the distance of the nearest neighbors to the high dimensional velocity vector. Finally, the "transform" method uses umap's transform method to transform new data points to the UMAP space. "transform" method is NOT recommended. Kernels that are based on the reconstructed vector field in high dimension is also possible. Defaults to "pearson". neg_cells_trick: Whether to handle cells having negative correlations in gene expression difference with high dimensional velocity vector separately. This option was borrowed from scVelo package (https://github.com/theislab/scvelo) and use in conjunction with "pearson" and "cosine" kernel. Not required if method is set to be "kmc". Defaults to True. calc_rnd_vel: Whether to calculate the random velocity vectors which can be plotted downstream as a negative control and used to adjust the quiver scale of the velocity field. Defaults to False. xy_grid_nums: A tuple of number of grids on each dimension. Defaults to (50, 50). correct_density: Whether to correct density when calculating the markov transition matrix. Defaults to True. scale: whether to scale velocity when calculating the markov transition matrix, applicable to the `kmc` kernel. Defaults to True. sample_fraction: The downsampled fraction of kNN for the purpose of acceleration, applicable to the `kmc` kernel. Defaults to None. random_seed: The random seed for numba to ensure consistency of the random velocity vectors. Default value 19491001 is a special day for those who care. Defaults to 19491001. enforce: Whether to enforce 1) redefining use_for_transition column in obs attribute; However this is NOT executed if the argument 'transition_genes' is not None. 2) recalculation of the transition matrix. Defaults to False. preserve_len: Whether to preserve the length of high dimension vector length. When set to be True, the length of low dimension projected vector will be proportionally scaled to that of the high dimensional vector. Defaults to False. kernel_kwargs: Kwargs that would be passed to the kernel for constructing the transition matrix. Raises: Exception: Neighborhood info is invalid. TypeError: Transition gene list is invalid. ValueError: Provided transition genes do not have velocity data. Exception: `X` and `V` have different dimensions. Exception: `X` and `X_embedding` has different number of samples. Exception: Number of dimension of `X` is smaller than the one of `X_embedding`. Exception: Most calculated velocity is theoretically invalid. NotImplementedError: The mode provided in kernel_kwargs is invalid. Returns: An updated AnnData object with projected velocity vectors, and a cell transition matrix calculated using either the Itô kernel method or similar methods from (La Manno et al. 2018). """ conn_key, dist_key, neighbor_key = generate_neighbor_keys(neighbor_key_prefix) mapper_r = get_mapper_inverse() layer = mapper_r[ekey] if (ekey is not None and ekey in mapper_r.keys()) else ekey ekey, vkey, layer = get_ekey_vkey_from_adata(adata) if (ekey is None or vkey is None) else (ekey, vkey, layer) if calc_rnd_vel: numba_random_seed(random_seed) if neighbor_key is not None and neighbor_key in adata.uns.keys() and "indices" in adata.uns[neighbor_key]: check_and_recompute_neighbors(adata, result_prefix=neighbor_key_prefix) # use neighbor indices in neighbor_key (if available) first for the sake of performance. indices = adata.uns[neighbor_key]["indices"] if type(indices) is not np.ndarray: indices = np.array(indices) # simple case: the input is a knn graph if len(indices.shape) > 1: indices = indices[:, :n_neighbors] # general case else: idx = np.ones((len(indices), n_neighbors)) * np.nan for i, nbr in enumerate(indices): idx[i, : len(nbr)] = nbr indices = idx if np.any(np.isnan(indices)): main_warning("Resulting knn index matrix contains NaN. Check if n_neighbors is too large.") elif adj_key is not None and adj_key in adata.obsp.keys(): if use_mnn: neighbors = adata.uns["mnn"] indices, _ = adj_to_knn(neighbors, adata.uns["neighbors"]["indices"].shape[1]) indices = indices[:, 1:] else: knn_indices, _ = adj_to_knn(adata.obsp[adj_key], n_neighbors) # knn_adj = knn_to_adj(knn_indices, knn_dists) # user wouldn't expect such a function to change the neighborhood info... # consider writing them into a new item, or do this in connectivity.neighbors. # adata.uns["neighbors"]["indices"], adata.obsp["distances"] = knn_indices, knn_adj # dist, indices = ( # adata.obsp["distances"], # adata.uns["neighbors"]["indices"], # ) # indices, dist = indices[:, 1:], dist[:, 1:] indices = knn_indices[:, 1:] else: raise Exception( f"Neighborhood info '{adj_key}' is missing in the provided anndata object." "Run `dyn.tl.reduceDimension` or `dyn.tl.neighbors` first." ) if X is None and V is None: if transition_genes is None: if "use_for_transition" not in adata.var.keys() or enforce: use_for_dynamics = True if "use_for_dynamics" in adata.var.keys() else False adata = set_transition_genes( adata, vkey=vkey, min_r2=min_r2, use_for_dynamics=use_for_dynamics, min_alpha=min_alpha, min_gamma=min_gamma, min_delta=min_delta, ) transition_genes = adata.var_names[adata.var.use_for_transition.values] else: if not enforce: main_warning( "A new set of transition genes is used, but because enforce=False, " "the transition matrix might not be recalculated if it is found in .obsp." ) dynamics_genes = ( adata.var.use_for_dynamics if "use_for_dynamics" in adata.var.keys() else np.ones(adata.n_vars, dtype=bool) ) if type(transition_genes) is str: transition_genes = adata.var[transition_genes].to_list() transition_genes = np.logical_and(transition_genes, dynamics_genes.to_list()) elif areinstance(transition_genes, str): transition_genes = adata.var_names[dynamics_genes].intersection(transition_genes).to_list() elif areinstance(transition_genes, bool) or areinstance(transition_genes, np.bool_): transition_genes = np.array(transition_genes) transition_genes = np.logical_and(transition_genes, dynamics_genes.to_list()) else: raise TypeError( "transition genes should either be a key of adata.var, an array of gene names, or of booleans." ) if len(transition_genes) < 1: raise ValueError( "None of the transition genes provided has velocity values. (or `var.use_for_dynamics` is `False`)." ) adata.var["use_for_transition"] = False if type(transition_genes[0]) == bool: adata.var.use_for_transition = transition_genes else: adata.var.loc[transition_genes, "use_for_transition"] = True # X = adata[:, transition_genes].layers[ekey] if X is None else X X = index_gene(adata, adata.layers[ekey], transition_genes) if X is None else X V = ( ( # adata[:, transition_genes].layers[vkey] index_gene(adata, adata.layers[vkey], transition_genes) if vkey in adata.layers.keys() else None ) if V is None else V ) if X.shape != V.shape: raise Exception("X and V do not have the same number of dimensions.") if X_embedding is None: has_splicing, has_labeling = ( adata.uns["dynamics"]["has_splicing"], adata.uns["dynamics"]["has_labeling"], ) if has_splicing and has_labeling: main_warning( "\nYour data has both labeling / splicing data, please ensuring using the right `basis` " "({basis}):" "\n when using `velocity_S`, please use basis based on X_spliced data;" "\n when using `velocity_T, please use basis based X_total. " "\nIf not sure the data in adata.X, you may need to set `basis='X_spliced_umap'`" "(`basis='X_total_umap'`) when using `velocity_S` (`velocity_T`). " "" ) if "_" in basis and any([i in basis for i in ["X_", "spliced_", "unspliced_", "new_", "total"]]): basis_layer, basis = basis.rsplit("_", 1) reduceDimension(adata, layer=basis_layer, reduction_method=basis) X_embedding = adata.obsm[basis] else: if vkey in ["velocity_S", "velocity_T"]: X_embedding = adata.obsm["X_" + basis] else: reduceDimension(adata, layer=layer, reduction_method=basis) X_embedding = adata.obsm[layer + "_" + basis] if X.shape[0] != X_embedding.shape[0]: raise Exception("X and X_embedding do not have the same number of samples.") if X.shape[1] < X_embedding.shape[1]: raise Exception( "The number of dimensions of X is smaller than that of the embedding. Try lower the min_r2, " "min_gamma thresholds." ) V = V.toarray() if sp.issparse(V) else V X = X.toarray() if sp.issparse(X) else X finite_inds = get_finite_inds(V) if sum(finite_inds) != X.shape[1]: main_info(f"{X.shape[1] - sum(finite_inds)} genes are removed because of nan velocity values.") X, V = X[:, finite_inds], V[:, finite_inds] if transition_genes is not None: # if X, V is provided by the user, transition_genes will be None adata.var.loc[np.array(transition_genes)[~finite_inds], "use_for_transition"] = False if finite_inds.sum() < 5 and len(finite_inds) > 100: raise Exception( f"there are only {finite_inds.sum()} genes have finite velocity values. " f"Please make sure the {vkey} is correctly calculated! And if you run kinetic parameters " "estimation for each cell-group via `group` argument, make sure all groups have sufficient " "number of cells, e.g. 50 cells at least. Otherwise some cells may have NaN values for all " "genes." ) if method == "kmc" and n_pca_components is None: n_pca_components = 30 if n_pca_components is not None: X_plus_V = log1p_(adata, X + V) X = log1p_(adata, X) if "velocity_pca_fit" not in adata.uns_keys() or type(adata.uns["velocity_pca_fit"]) == str: pca_monocle = PCA( n_components=min(n_pca_components, X.shape[1] - 1), svd_solver="arpack", random_state=0, ) pca_fit = pca_monocle.fit(X) X_pca = pca_fit.transform(X) adata.uns["velocity_pca_fit"] = pca_fit adata.uns["velocity_PCs"] = pca_fit.components_.T adata.obsm["X_velocity_pca"] = X_pca X_pca, _, pca_fit = ( adata.obsm["X_velocity_pca"], adata.uns["velocity_PCs"], adata.uns["velocity_pca_fit"], ) Y_pca = pca_fit.transform(X_plus_V) V_pca = Y_pca - X_pca adata.obsm["velocity_pca_raw"] = V_pca X, V = X_pca[:, :n_pca_components], V_pca[:, :n_pca_components] # add both source and sink distribution if method == "kmc": if method + "_transition_matrix" in adata.obsp.keys() and not enforce: T = adata.obsp[method + "_transition_matrix"] if transition_matrix is None else transition_matrix kmc = KernelMarkovChain(P=T) else: kmc = KernelMarkovChain() kmc_args = { "n_recurse_neighbors": 2, "M_diff": 2, "epsilon": None, "adaptive_local_kernel": True, "tol": 1e-7, } kmc_args = update_dict(kmc_args, kernel_kwargs) if method + "_transition_matrix" not in adata.obsp.keys() or not enforce: kmc.fit( X, V, neighbor_idx=indices, sample_fraction=sample_fraction, **kmc_args, ) # T = kmc.P if correct_density: delta_X = kmc.compute_density_corrected_drift( X_embedding, kmc.Idx, normalize_vector=True, scale=scale ) # indices, k = 500 else: delta_X = kmc.compute_drift(X_embedding, num_prop=1, scale=scale) # indices, k = 500 # P = kmc.compute_stationary_distribution() # adata.obs['stationary_distribution'] = P if calc_rnd_vel: kmc = KernelMarkovChain() permute_rows_nsign(V) kmc.fit(X, V, **kmc_args) # neighbor_idx=indices, T_rnd = kmc.P if correct_density: delta_X_rnd = kmc.compute_density_corrected_drift( X_embedding, kmc.Idx, normalize_vector=True ) # indices, k = 500 else: delta_X_rnd = kmc.compute_drift(X_embedding) # P_rnd = kmc.compute_stationary_distribution() # adata.obs['stationary_distribution_rnd'] = P_rnd adata.uns["kmc"] = kmc elif method in ["pearson", "cosine"]: vs_kwargs = { "n_recurse_neighbors": 2, "max_neighs": None, "transform": "sqrt", "use_neg_vals": True, } vs_kwargs = update_dict(vs_kwargs, kernel_kwargs) if method + "_transition_matrix" in adata.obsp.keys() and not enforce: print("Using existing %s found in .obsp." % (method + "_transition_matrix")) T = adata.obsp[method + "_transition_matrix"] if transition_matrix is None else transition_matrix delta_X = projection_with_transition_matrix(T, X_embedding, correct_density) X_grid, V_grid, D = velocity_on_grid( X_embedding[:, :2], (X_embedding + delta_X)[:, :2], xy_grid_nums=xy_grid_nums, ) else: T, delta_X, X_grid, V_grid, D = kernels_from_velocyto_scvelo( X, X_embedding, V, indices, neg_cells_trick, xy_grid_nums, method, correct_density=correct_density, **vs_kwargs, ) if calc_rnd_vel: permute_rows_nsign(V) (T_rnd, delta_X_rnd, X_grid_rnd, V_grid_rnd, D_rnd,) = kernels_from_velocyto_scvelo( X, X_embedding, V, indices, neg_cells_trick, xy_grid_nums, method, correct_density=correct_density, **vs_kwargs, ) elif method == "fp": graph_kwargs = { "k": 30, "E_func": "sqrt", "normalize_v": False, "scale_by_dist": False, } graph_kwargs = update_dict(graph_kwargs, kernel_kwargs) fp_kwargs = {"D": 50, "drift_weight": False, "weight_mode": "symmetric"} fp_kwargs = update_dict(fp_kwargs, kernel_kwargs) wgt_kwargs = { "weight": "naive", "sig": None, "auto_sig_func": None, "auto_sig_multiplier": 2, } wgt_kwargs = update_dict(wgt_kwargs, kernel_kwargs) wgt_mode = wgt_kwargs.pop("weight", "naive") ctmc_kwargs = { "eignum": 30, } ctmc_kwargs = update_dict(ctmc_kwargs, kernel_kwargs) if ( method + "_transition_matrix" in adata.obsp.keys() or method + "_transition_rate" in adata.obsp.keys() ) and not enforce: if method + "_transition_matrix" in adata.obsp.keys(): print("Using existing %s found in .obsp." % (method + "_transition_matrix")) T = adata.obsp[method + "_transition_matrix"] if transition_matrix is None else transition_matrix elif method + "_transition_rate" in adata.obsp.keys(): print("Using existing %s found in .obsp." % (method + "_transition_rate")) R = adata.obsp[method + "_transition_rate"] T = ContinuousTimeMarkovChain(P=R.T).compute_embedded_transition_matrix().T delta_X = projection_with_transition_matrix(T, X_embedding, correct_density) else: E, nbrs_idx, dists = graphize_velocity(V, X, nbrs_idx=indices, **graph_kwargs) if wgt_mode == "naive": W = None elif wgt_mode == "gaussian": main_info("Calculating Gaussian weights with the following parameters:") main_info(f"{wgt_kwargs}") W = calc_gaussian_weight(nbrs_idx, dists, **wgt_kwargs) else: raise NotImplementedError(f"The weight mode `{wgt_mode}` is not supported.") L = fp_operator(E, W=W, **fp_kwargs) ctmc = ContinuousTimeMarkovChain(P=L, **ctmc_kwargs) T = sp.csr_matrix(ctmc.compute_embedded_transition_matrix().T) delta_X = projection_with_transition_matrix(T, X_embedding, correct_density) adata.obsp["fp_transition_rate"] = ctmc.P.T adata.obsp["discrete_vector_field"] = E elif method == "transform": params = adata.uns["umap_fit"] umap_trans = construct_mapper_umap( params["X_data"], n_components=params["umap_kwargs"]["n_components"], metric=params["umap_kwargs"]["metric"], min_dist=params["umap_kwargs"]["min_dist"], spread=params["umap_kwargs"]["spread"], max_iter=params["umap_kwargs"]["max_iter"], alpha=params["umap_kwargs"]["alpha"], gamma=params["umap_kwargs"]["gamma"], negative_sample_rate=params["umap_kwargs"]["negative_sample_rate"], init_pos=params["umap_kwargs"]["init_pos"], random_state=params["umap_kwargs"]["random_state"], umap_kwargs=params["umap_kwargs"], ) CM = adata.X[:, adata.var.use_for_dynamics.values] if "PCs" not in adata.uns_keys(): from ..preprocessing.pca import pca adata, pca_fit, X_pca = pca(adata, CM, params["n_pca_components"], "X", return_all=True) X_pca, pca_PCs = adata.obsm[DKM.X_PCA], adata.uns["PCs"] V = adata[:, adata.var.use_for_dynamics.values].layers[vkey] if vkey in adata.layers.keys() else None CM, V = CM.toarray() if sp.issparse(CM) else CM, V.toarray() if sp.issparse(V) else V V[np.isnan(V)] = 0 Y_pca = expr_to_pca(CM + V, PCs=pca_PCs, mean=(CM + V).mean(0)) Y = umap_trans.transform(Y_pca) delta_X = Y - X_embedding if method not in ["pearson", "cosine"]: X_grid, V_grid, D = velocity_on_grid(X_embedding[:, :2], delta_X[:, :2], xy_grid_nums=xy_grid_nums) if calc_rnd_vel: X_grid_rnd, V_grid_rnd, D_rnd = velocity_on_grid( X_embedding[:, :2], delta_X_rnd[:, :2], xy_grid_nums=xy_grid_nums ) if preserve_len: basis_len, high_len = np.linalg.norm(delta_X, axis=1), np.linalg.norm(V, axis=1) scaler = np.nanmedian(basis_len) / np.nanmedian(high_len) for i in LoggerManager.progress_logger(range(adata.n_obs), progress_name="rescaling velocity norm"): idx = T[i].indices high_len_ = high_len[idx] T_i = T[i].data delta_X[i] *= T_i.dot(high_len_) / basis_len[i] * scaler if add_transition_key is None: transition_key = method + "_transition_matrix" else: transition_key = add_transition_key if method != "transform": adata.obsp[transition_key] = T if add_velocity_key is None: velocity_key, grid_velocity_key = "velocity_" + basis, "grid_velocity_" + basis else: velocity_key, grid_velocity_key = add_velocity_key, "grid_" + add_velocity_key adata.obsm[velocity_key] = delta_X adata.uns[grid_velocity_key] = { "X_grid": X_grid, "V_grid": V_grid, "D": D, } if calc_rnd_vel: if add_transition_key is None: transition_rnd_key = method + "_transition_matrix_rnd" else: transition_rnd_key = add_transition_key + "_rnd" if add_velocity_key is None: velocity_rnd_key, grid_velocity_rnd_key = "velocity_" + basis + "_rnd", "grid_velocity_" + basis + "_rnd" else: velocity_rnd_key, grid_velocity_rnd_key = add_velocity_key + "_rnd", "grid_" + add_velocity_key + "_rnd" X_embedding_rnd = "X_" + basis + "_rnd" adata.obsp[transition_rnd_key] = T_rnd adata.obsm[X_embedding_rnd] = X_embedding adata.obsm[velocity_rnd_key] = delta_X_rnd adata.uns[grid_velocity_rnd_key] = { "X_grid": X_grid_rnd, "V_grid": V_grid_rnd, "D": D_rnd, } return adata
[docs]def confident_cell_velocities( adata: AnnData, group: str, lineage_dict: Dict[str, Union[List[str], str]], ekey: Optional[str] = "M_s", vkey: Optional[str] = "velocity_S", basis: str = "umap", confidence_threshold: float = 0.85, only_transition_genes: bool = False, ) -> AnnData: """Compute transition probability and perform velocity projection Confidently compute transition probability and project high dimension velocity vector to existing low dimension embeddings using progenitors and mature cell groups priors. Args: adata: An AnnData object. group: The column key/name that identifies the cell state grouping information of cells. This will be used for calculating gene-wise confidence score in each cell state. lineage_dict: A dictionary describes lineage priors. Keys correspond to the group name from `group` that corresponding to the state of one progenitor type while values correspond to the group names from `group` of one or multiple terminal cell states. The best practice for determining terminal cell states are those fully functional cells instead of intermediate cell states. Note that in python a dictionary key cannot be a list, so if you have two progenitor types converge into one terminal cell state, you need to create two records each with the same terminal cell as value but different progenitor as the key. Value can be either a string for one cell group or a list of string for multiple cell groups. ekey: The layer that will be used to retrieve data for identifying the gene is in induction or repression phase at each cell state. If `None`, `.X` is used. Defaults to "M_s". vkey: The layer that will be used to retrieve velocity data for calculating gene-wise confidence. If `None`, `velocity_S` is used. Defaults to "velocity_S". basis: The dictionary key that corresponds to the reduced dimension in `.obsm` attribute. Defaults to "umap". confidence_threshold: The minimal threshold of the mean of the average progenitors and the average mature cells prior based gene-wise velocity confidence score. Only genes with score larger than this will be considered as confident transition genes for velocity projection. Defaults to 0.85. only_transition_genes: Whether only use previous identified transition genes for confident gene selection, followed by velocity projection. Defaults to False. Raises: Exception: RNA velocity not evaluated. Returns: An updated `~anndata.AnnData` with only confident genes based transition_matrix and projected embedding of high dimension velocity vectors in the existing embeddings of current cell state, calculated using either the cosine kernel method from (La Manno et al. 2018) or the Itô kernel for the FP method, etc. """ if not any([i.startswith("velocity") for i in adata.layers.keys()]): raise Exception( "You need to first run `dyn.tl.dynamics(adata)` to estimate kinetic parameters and obtain " "raw RNA velocity before running this function." ) if only_transition_genes: if "use_for_transition" not in adata.var.keys(): main_warning( "`dyn.tl.cell_velocities(adata)` is not performed yet. Rolling back to use all feature genes " "as input for supervised RNA velocity analysis." ) genes = adata.var_names[adata.var.use_for_dynamics] else: genes = adata.var_names[adata.var.use_for_transition] else: genes = adata.var_names[adata.var.use_for_dynamics] gene_wise_confidence( adata, group, lineage_dict, genes=genes, ekey=ekey, vkey=vkey, ) adata.var.loc[:, "avg_confidence"] = ( adata.var.loc[:, "avg_prog_confidence"] + adata.var.loc[:, "avg_mature_confidence"] ) / 2 confident_genes = genes[adata[:, genes].var["avg_confidence"] > confidence_threshold] adata.var["confident_genes"] = False adata.var.loc[confident_genes, "confident_genes"] = True X = adata[:, confident_genes].layers[ekey] V = adata[:, confident_genes].layers[vkey] X_embedding = adata.obsm["X_" + basis] cell_velocities( adata, enforce=True, X=X, V=V, X_embedding=X_embedding, basis=basis, transition_genes=confident_genes, ) return adata
[docs]def stationary_distribution( adata: AnnData, method: str = "kmc", direction: Literal["both", "forward", "backward"] = "both", calc_rnd: bool = True, ) -> None: """Compute stationary distribution of cells using the transition matrix. Update the AnnData object with source, sink stationary distributions and the randomized results, depending on the `direction` and `calc_rnd` arguments. Args: adata: An AnnData object. method: The method to calculate the stationary distribution. Defaults to "kmc". direction: The direction of diffusion for calculating the stationary distribution, can be one of `both`, `forward`, `backward`. Defaults to "both". calc_rnd: Whether to also calculate the stationary distribution from the control randomized transition matrix. Defaults to True. """ # row is the source and columns are targets T = adata.obsp["transition_matrix"] if method == "kmc": kmc = KernelMarkovChain() kmc.P = T if direction == "both": adata.obs["sink_steady_state_distribution"] = kmc.compute_stationary_distribution() kmc.P = T.T / T.T.sum(0) adata.obs["source_steady_state_distribution"] = kmc.compute_stationary_distribution() if calc_rnd: T_rnd = adata.obsp["transition_matrix_rnd"] kmc.P = T_rnd adata.obs["sink_steady_state_distribution_rnd"] = kmc.compute_stationary_distribution() kmc.P = T_rnd.T / T_rnd.T.sum(0) adata.obs["source_steady_state_distribution_rnd"] = kmc.compute_stationary_distribution() elif direction == "forward": adata.obs["sink_steady_state_distribution"] = kmc.compute_stationary_distribution() if calc_rnd: T_rnd = adata.obsp["transition_matrix_rnd"] kmc.P = T_rnd adata.obs["sink_steady_state_distribution_rnd"] = kmc.compute_stationary_distribution() elif direction == "backward": kmc.P = T.T / T.T.sum(0) adata.obs["source_steady_state_distribution"] = kmc.compute_stationary_distribution() if calc_rnd: T_rnd = adata.obsp["transition_matrix_rnd"] kmc.P = T_rnd.T / T_rnd.T.sum(0) adata.obs["sink_steady_state_distribution_rnd"] = kmc.compute_stationary_distribution() else: T = T.T if direction == "both": adata.obs["source_steady_state_distribution"] = diffusion(T, backward=True) adata.obs["sink_steady_state_distribution"] = diffusion(T) if calc_rnd: T_rnd = adata.obsp["transition_matrix_rnd"] adata.obs["source_steady_state_distribution_rnd"] = diffusion(T_rnd, backward=True) adata.obs["sink_steady_state_distribution_rnd"] = diffusion(T_rnd) elif direction == "forward": adata.obs["sink_steady_state_distribution"] = diffusion(T) if calc_rnd: T_rnd = adata.uns["transition_matrix_rnd"] adata.obs["sink_steady_state_distribution_rnd"] = diffusion(T_rnd) elif direction == "backward": adata.obs["source_steady_state_distribution"] = diffusion(T, backward=True) if calc_rnd: T_rnd = adata.obsp["transition_matrix_rnd"] adata.obs["source_steady_state_distribution_rnd"] = diffusion(T_rnd, backward=True)
[docs]def generalized_diffusion_map(adata: AnnData, **kwargs) -> None: """Apply the diffusion map algorithm on the transition matrix build from Itô kernel. Update the AnnData object with X_diffusion_map embedded in `.obsm` attribute. Args: adata: An AnnData object with the constructed transition matrix. kwargs: Additional kwargs that will be passed to `diffusion_map_embedding function`. """ kmc = KernelMarkovChain() kmc.P = adata.obsp["transition_matrix"] dm_args = {"n_dims": 2, "t": 1} dm_args.update(kwargs) dm = kmc.diffusion_map_embedding(*dm_args) adata.obsm["X_diffusion_map"] = dm
[docs]def diffusion( M: np.ndarray, P0: Optional[np.ndarray] = None, steps: Optional[int] = None, backward: bool = False ) -> np.ndarray: """Find the state distribution of a Markov process. Args: M: The transition matrix with dimension of n x n, where n is the cell number. P0: The initial cell state with dimension of n. Defaults to None. steps: The random walk steps on the Markov transition matrix. Defaults to None. backward: Whether the backward transition will be considered. Defaults to False. Returns: The state distribution of the Markov process. """ if backward is True: M = M.T M = M / M.sum(1) if steps is None: # code inspired from https://github.com/prob140/prob140/blob/master/prob140/markov_chains.py#L284 eigenvalue, eigen = scipy.linalg.eig( M, left=True, right=False ) # if not sp.issparse(M) else eigs(M) # source is on the row eigenvector = np.real(eigen) if not sp.issparse(M) else np.real(eigen.T) eigenvalue_1_ind = np.isclose(eigenvalue, 1) mu = eigenvector[:, eigenvalue_1_ind] / np.sum(eigenvector[:, eigenvalue_1_ind]) # Zero out floating poing errors that are negative. indices = np.logical_and(np.isclose(mu, 0), mu < 0) mu[indices] = 0 # steady state distribution else: mu = ( np.nanmean(M.dot(np.linalg.matrix_power(M, steps)), 0) if P0 is None else P0.dot(np.linalg.matrix_power(M, steps)) ) return mu
[docs]def expected_return_time(M: np.ndarray, backward=False) -> np.ndarray: """Find the expected returning time. Args: M: The transition matrix. backward: Whether the backward transition will be considered. Defaults to False. Returns: The expected return time (1 / steady_state_probability). """ steady_state = diffusion(M, P0=None, steps=None, backward=backward) T = 1 / steady_state return T
def kernels_from_velocyto_scvelo( X: np.ndarray, X_embedding: np.ndarray, V: np.ndarray, adj_mat: np.ndarray, neg_cells_trick: bool, xy_grid_nums: Tuple[int], kernel: Literal["pearson", "cosine"] = "pearson", n_recurse_neighbors: int = 2, max_neighs: Optional[int] = None, transform: Literal["log", "logratio", "linear", "sqrt"] = "sqrt", use_neg_vals: bool = True, correct_density: bool = True, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Utility function for calculating the transition matrix and low dimensional velocity. Two kernels, the original pearson correlation kernel (La Manno et al., 2018) or the cosine kernel from scVelo (Bergen et al., 2019) are available for calculation. Args: X: The expression state of single cells. X_embedding: The low expression reduced space (pca, umap, tsne, etc.) of single cells that RNA velocity will be projected onto. Note X_embedding, X and V has to have the same cell/sample dimension and X_embedding should have less feature dimension comparing that of X or V. V: The RNA velocity of single cells (or velocity estimates projected to reduced dimension, like pca, of single cells). Note that X, V need to have the exact dimensionalities. adj_mat: The neighbor indices. neg_cells_trick: Whether to handle cells having negative correlations in gene expression difference with high dimensional velocity vector separately. xy_grid_nums: A tuple of number of grids on each dimension. kernel: The method to calculate correlation between X and velocity vector Y_i for gene i. Defaults to "pearson". n_recurse_neighbors: The order of neighbors to be used to calculate velocity graph. Defaults to 2. max_neighs: The max number of neighbors to be used to calculate velocity graph. If the number of neighbors within the order of n_recurse_neighbors is larger than this value, a random subset will be chosen. Defaults to None. transform: The method to transform the original velocity matrix. Defaults to "sqrt". use_neg_vals: Whether to use negative values during handle cells having negative correlations. Defaults to True. correct_density: Whether to correct density when calculating the markov transition matrix. Defaults to True. Returns: A tuple (T, delta_X, X_grid, V_grid, D) where T is the transition matrix, delta_X is the low dimensional velocity, X_grid is a grid for plotting velocities and V_grid is the velocities on the grid. D is the diffusion matrix. """ n = X.shape[0] if adj_mat is not None: rows = [] cols = [] vals = [] delta_X = np.zeros((n, X_embedding.shape[1])) for cur_i in LoggerManager.progress_logger( range(n), progress_name=f"calculating transition matrix via {kernel} kernel with {transform} transform.", ): velocity = V[cur_i, :] # project V to pca space if velocity.sum() != 0: neighbor_index_vals = get_neighbor_indices( adj_mat, cur_i, n_recurse_neighbors, max_neighs ) # np.zeros((knn, 1)) diff = X[neighbor_index_vals, :] - X[cur_i, :] if transform == "log": diff_velocity = np.sign(velocity) * np.log1p(np.abs(velocity)) diff_rho = np.sign(diff) * np.log1p(np.abs(diff)) elif transform == "logratio": hi_dim, hi_dim_t = X[cur_i, :], X[cur_i, :] + velocity log2hidim = np.log1p(np.abs(hi_dim)) diff_velocity = np.log1p(np.abs(hi_dim_t)) - log2hidim diff_rho = np.log1p(np.abs(X[neighbor_index_vals, :])) - np.log1p(np.abs(hi_dim)) elif transform == "linear": diff_velocity = velocity diff_rho = diff elif transform == "sqrt": diff_velocity = np.sign(velocity) * np.sqrt(np.abs(velocity)) diff_rho = np.sign(diff) * np.sqrt(np.abs(diff)) if kernel == "pearson": vals_ = einsum_correlation(diff_rho, diff_velocity, type="pearson") elif kernel == "cosine": vals_ = einsum_correlation(diff_rho, diff_velocity, type="cosine") rows.extend([cur_i] * len(neighbor_index_vals)) cols.extend(neighbor_index_vals) vals.extend(vals_) vals = np.hstack(vals) vals[np.isnan(vals)] = 0 G = sp.csr_matrix((vals, (rows, cols)), shape=(X_embedding.shape[0], X_embedding.shape[0])) G = split_velocity_graph(G, neg_cells_trick) if neg_cells_trick: G, G_ = G confidence, ub_confidence = G.max(1).toarray().flatten(), np.percentile(G.max(1).toarray().flatten(), 98) dig_p = np.clip(ub_confidence - confidence, 0, 1) G.setdiag(dig_p) T = np.expm1(G / 0.1) if neg_cells_trick: if use_neg_vals: T -= np.expm1(-G_ / 0.1) else: T += np.expm1(G_ / 0.1) T.data = T.data + 1 # T = w * (~ direct_neighs).multiply(T) + (1 - w) * direct_neighs.multiply(T) # normalize so that each row sum up to 1 sparsefuncs.inplace_row_scale(T, 1 / np.abs(T).sum(axis=1).A1) T.setdiag(0) T.eliminate_zeros() delta_X = projection_with_transition_matrix(T, X_embedding, correct_density) X_grid, V_grid, D = velocity_on_grid( X_embedding[:, :2], (X_embedding + delta_X)[:, :2], xy_grid_nums=xy_grid_nums, ) return T, delta_X, X_grid, V_grid, D # utility functions for calculating the random cell velocities @jit(nopython=True) def numba_random_seed(seed: int) -> None: """Same as np.random.seed but for numba. Function adapated from velocyto. Args: seed: The random seed value """ np.random.seed(seed) @jit(nopython=True) def permute_rows_nsign(A: np.ndarray) -> None: """Permute in place the entries and randomly switch the sign for each row of a matrix independently. The function is adapted from velocyto. Args: A: A numpy array that will be permuted. """ plmi = np.array([+1, -1]) for i in range(A.shape[1]): np.random.shuffle(A[:, i]) A[:, i] = A[:, i] * np.random.choice(plmi, size=A.shape[0])