# use for convert list of list to a list (https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists)
import functools
import operator
import numpy as np
import numpy.matlib as matlib
import scipy.sparse
import scipy.spatial as ss
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import eigs
# from scikits.sparse.cholmod import cholesky
def sqdist(a, b):
"""calculate the square distance between a, b
Arguments
---------
a: 'np.ndarray'
A matrix with :math:`D \times N` dimension
b: 'np.ndarray'
A matrix with :math:`D \times N` dimension
Returns
-------
dist: 'np.ndarray'
A numeric value for the different between a and b
"""
aa = np.sum(a ** 2, axis=0)
bb = np.sum(b ** 2, axis=0)
ab = a.T.dot(b)
aa_repmat = matlib.repmat(aa[:, None], 1, b.shape[1])
bb_repmat = matlib.repmat(bb[None, :], a.shape[1], 1)
dist = abs(aa_repmat + bb_repmat - 2 * ab)
return dist
def repmat(X, m, n):
"""This function returns an array containing m (n) copies of A in the row (column) dimensions. The size of B is
size(A)*n when A is a matrix.For example, repmat(np.matrix(1:4), 2, 3) returns a 4-by-6 matrix.
Arguments
---------
X: 'np.ndarray'
An array like matrix.
m: 'int'
Number of copies on row dimension
n: 'int'
Number of copies on column dimension
Returns
-------
xy_rep: 'np.ndarray'
A matrix of repmat
"""
xy_rep = matlib.repmat(X, m, n)
return xy_rep
def eye(m, n):
"""Equivalent of eye (matlab)
Arguments
---------
m: 'int'
Number of rows
n: 'int'
Number of columns
Returns
-------
mat: 'np.ndarray'
A matrix of eye
"""
mat = np.eye(m, n)
return mat
def diag_mat(values):
"""Equivalent of diag (matlab)
Arguments
---------
values: 'int'
dim of the matrix
Returns
-------
mat: 'np.ndarray'
A diag_matrix
"""
# mat = np.zeros((len(values),len(values)))
# for i in range(len(values)):
# mat[i][i] = values[i]
mat = np.zeros((len(values), len(values)))
np.fill_diagonal(mat, values)
return mat
[docs]def psl(
Y, sG=None, dist=None, K=10, C=1e3, param_gamma=1e-3, d=2, maxIter=10, verbose=False
):
"""This function is a pure Python implementation of the PSL algorithm.
Reference: Li Wang and Qi Mao, Probabilistic Dimensionality Reduction via Structure Learning. T-PAMI, VOL. 41, NO. 1, JANUARY 2019
Arguments
---------
Y: 'numpy.ndarray'
data list
sG: 'scipy.sparse.csr_matrix'
a prior kNN graph passed to the algorithm
dist: 'numpy.ndarray'
a dense distance matrix between all vertices. If no distance matrix passed, we will use the kNN based algorithm,
otherwise we will use the original algorithm reported in the manuscript.
K: 'int'
number of nearest neighbors used to build the neighborhood graph. Large k can obtain less sparse structures.
Ignored if sG is used.
C: 'int'
The penalty parameter for loss term. It controls the preservation of distances. The larger it is, the distance
is more strictly preserve. If the structure is very clear, a larger C is preferred.
param_gamma: 'int'
param_gamma is trying to make a matrix A nonsingular, it is like a round-off parameter. 1e-4 or 1e-5 is good.
It corresponds to the variance of prior embedding.
d: 'int'
embedding dimension
maxIter: 'int'
Number of maximum iterations
verbose: 'bool'
Whether to print running information
Returns
-------
(S,Z): 'tuple'
a tuple of the adjacency matrix and the reduced low dimension embedding.
"""
if sG is None:
if not dist:
tree = ss.cKDTree(Y)
dist_mat, idx_mat = tree.query(Y, k=K + 1)
N = Y.shape[0]
distances = dist_mat[:, 1:]
indices = idx_mat[:, 1:]
rows = np.zeros(N * K)
cols = np.zeros(N * K)
dists = np.zeros(N * K)
location = 0
for i in range(N):
rows[location: location + K] = i
cols[location: location + K] = indices[i]
dists[location: location + K] = distances[i]
location = location + K
sG = csr_matrix((np.array(dists) ** 2, (rows, cols)), shape=(N, N))
sG = scipy.sparse.csc_matrix.maximum(sG, sG.T) # symmetrize the matrix
else:
N = Y.shape[0]
sidx = np.argsort(dist)
# flatten first rows and then cols
i = repmat(sidx[:, 0][:, None], K, 1).flatten() # .reshape(1, -1)[0]
j = sidx[:, 1: K + 1].T.flatten() # .reshape(1, -1)[0]
sG = csr_matrix(
(np.repeat(1, N * K), (i, j)), shape=(N, N)
) # [1 for k in range(N * K)]
if not dist:
if list(set(sG.data)) == [1]:
print(
"Error: sG should not just be an adjacency graph and has to include the distance information between vertices!"
)
exit()
else:
dist = sG
N, D = Y.shape
G = sG
rows, cols, s0 = scipy.sparse.find(scipy.sparse.tril(G))
# idx_map = np.vstack((rows, cols)).T
s = np.ones(s0.shape)
m = len(s)
#############################################
objs = np.zeros(maxIter)
for iter in range(maxIter):
S = csr_matrix((s, (rows, cols)), shape=(N, N)) # .toarray()
S = S + S.T
Q = (
scipy.sparse.diags(
functools.reduce(operator.concat, S.sum(axis=1)[:, 0].tolist())
)
- S
+ 0.25 * (param_gamma + 1) * scipy.sparse.eye(N, N)
) ##################
R = scipy.linalg.cholesky(
Q.toarray()
) # Cholesky Decomposition of a Sparse Matrix
invR = scipy.sparse.linalg.inv(csr_matrix(R)) # R:solve(R)
# invR = np.matrix(invR)
# invQ = invR*invR.T
# left = invR.T*np.matrix(Y)
invQ = invR.dot(invR.T)
left = invR.T.dot(Y)
# res = scipy.sparse.linalg.svds(left, k = d)
res = scipy.linalg.svd(left)
Lambda = res[1][:d]
W = res[2][:, :2]
invQY = invR.dot(left)
invQYW = invQY.dot(W)
P = 0.5 * D * invQ + 0.125 * param_gamma ** 2 * invQYW.dot(invQYW.T)
logdet_Q = 2 * sum(np.log(np.diag(np.linalg.cholesky(Q.toarray()).T)))
# log(det(Q))
obj = (
0.5 * D * logdet_Q
- scipy.sparse.csr_matrix.sum(scipy.sparse.csr_matrix.multiply(S, dist))
+ 0.25
/ C
* scipy.sparse.csr_matrix.sum(scipy.sparse.csr_matrix.multiply(S, S))
- 0.125 * param_gamma ** 2 * sum(np.diag(np.dot(W.T, np.dot(Y.T, invQYW))))
) # trace: #sum(diag(m))
objs[iter] = obj
if verbose:
if iter == 0:
print("i = ", iter + 1, ", obj = ", obj)
else:
rel_obj_diff = abs(obj - objs[iter - 1]) / abs(objs[iter - 1])
print("i = ", iter, ", obj = ", obj, ", rel_obj_diff = ", rel_obj_diff)
subgrad = np.zeros(m)
for i in range(len(rows)):
subgrad[i] = (
P[rows[i], rows[i]]
+ P[cols[i], cols[i]]
- P[rows[i], cols[i]]
- P[cols[i], rows[i]]
- 1 / C * S[rows[i], cols[i]]
- 2 * dist[rows[i], cols[i]]
)
s = s + 1 / (iter + 1) * subgrad
s[s < 0] = 0
# print("print s:",s)
if param_gamma != 0:
# print("print invQY:",invQY)
# print("print W:",W)
Z = 0.25 * (param_gamma + 1) * np.dot(invQY, W)
else:
# centeralized kernel
A = scipy.sparse.linalg.inv(Q)
column_sums = np.array(np.sum(A, 0) / N)
J = np.dot(np.array(np.ones(N))[:, None], np.array(column_sums))
K = A - J - J.T + sum(column_sums) / N
# eigendecomposition
V, U = eigs(K, d)
v = V[0:d]
tmp = np.zeros(shape=(d, d))
np.fill_diagonal(tmp, np.sqrt(v))
Z = np.dot(U, tmp)
return (S, Z)
def logdet(A):
""" Here, A should be a square matrix of double or single class.
If A is singular, it will returns -inf.
Theoretically, this function should be functionally
equivalent to log(det(A)). However, it avoids the
overflow/underflow problems that are likely to
happen when applying det to large matrices.
"""
v = 2 * sum(np.log(np.diag(np.linalg.cholesky(A))))
return v