Source code for dynamo.tools.dimension_reduction

import warnings
from .utils_reduceDimension import prepare_dim_reduction, run_reduce_dim
from .connectivity import neighbors


[docs]def reduceDimension( adata, X_data=None, genes=None, layer=None, basis='pca', dims=None, n_pca_components=30, n_components=2, n_neighbors=30, reduction_method="umap", enforce=False, cores=1, **kwargs ): """Compute a low dimension reduction projection of an annodata object first with PCA, followed by non-linear dimension reduction methods Arguments --------- adata: :class:`~anndata.AnnData` an Annodata object X_data: `np.ndarray` (default: `None`) The user supplied data that will be used for dimension reduction directly. genes: `list` or None (default: `None`) The list of genes that will be used to subset the data for dimension reduction and clustering. If `None`, all genes will be used. layer: `str` or None (default: `None`) The layer that will be used to retrieve data for dimension reduction and clustering. If `None`, .X is used. basis: `str` or None (default: `None`) The space that will be used for clustering. Valid names includes, for example, `pca`, `umap`, `velocity_pca` (that is, you can use velocity for clustering), etc. dims: `list` or None (default: `None`) The list of dimensions that will be selected for clustering. If `None`, all dimensions will be used. n_pca_components: 'int' (optional, default 30) Number of PCA components. n_components: 'int' (optional, default 2) The dimension of the space to embed into. n_neighbors: 'int' (optional, default 30) Number of nearest neighbors when constructing adjacency matrix. reduction_method: 'str' (optional, default umap) Non-linear dimension reduction method to further reduce dimension based on the top n_pca_components PCA components. Currently, PSL (probablistic structure learning, a new dimension reduction by us), tSNE (fitsne instead of traditional tSNE used) or umap are supported. cores: `int` (optional, default `1`) Number of cores. Used only when the tSNE reduction_method is used. Returns ------- Returns an updated `adata` with reduced dimension data for data from different layers. """ if X_data is None: X_data, n_components, has_basis, _ = prepare_dim_reduction(adata, genes=genes, layer=layer, basis=reduction_method, dims=dims, n_pca_components=n_pca_components, n_components=n_components, ) else: has_basis = False if has_basis and not enforce: warnings.warn(f"adata already have basis {reduction_method}. dimension reduction {reduction_method} will be skipped! \n" f"set enforce=True to re-performing dimension reduction.") embedding_key = ( "X_" + reduction_method if layer is None else layer + "_" + reduction_method ) neighbor_key = "neighbors" if layer is None else layer + "_neighbors" if enforce or not has_basis: adata = run_reduce_dim(adata, X_data, n_components, n_pca_components, reduction_method, embedding_key, n_neighbors, neighbor_key, cores, kwargs) if neighbor_key not in adata.uns_keys(): neighbors(adata) return adata
# @docstrings.with_indent(4) # def run_umap(X, # n_neighbors=30, # n_components=2, # metric="euclidean", # min_dist=0.1, # spread=1.0, # n_epochs=None, # alpha=1.0, # gamma=1.0, # negative_sample_rate=5, # init_pos='spectral', # random_state=0, # verbose=False, **umap_kwargs): # """Perform umap analysis. # # Parameters # ---------- # %(umap_ann.parameters)s # # Returns # ------- # graph, knn_indices, knn_dists, embedding_, mapper # A tuple of kNN graph (`graph`), indices of nearest neighbors of each cell (knn_indicies), distances of nearest # neighbors (knn_dists), the low dimensional embedding (embedding_) and finally the fit mapper from umap which # can be used to transform new high dimensional data to low dimensional space or perofrm inverse transform of # new data back to high dimension. # """ # # _umap_kwargs={"angular_rp_forest": False, "local_connectivity": 1.0, "metric_kwds": None, # "set_op_mix_ratio": 1.0, "target_metric": 'categorical', "target_metric_kwds": None, # "target_n_neighbors": -1, "target_weight": 0.5, "transform_queue_size": 4.0, # "transform_seed": 42} # umap_kwargs = update_dict(_umap_kwargs, umap_kwargs) # # mapper = umap.UMAP(n_neighbors=n_neighbors, # n_components=n_components, # metric=metric, # min_dist=min_dist, # spread=spread, # n_epochs=n_epochs, # learning_rate=alpha, # repulsion_strength=gamma, # negative_sample_rate=negative_sample_rate, # init=init_pos, # random_state = random_state, # verbose=verbose, # **umap_kwargs # ).fit(X) # # dmat = pairwise_distances(X, metric=metric) # graph = fuzzy_simplicial_set( # X=dmat, # n_neighbors=n_neighbors, # random_state=random_state, # metric="precomputed", # verbose=verbose # ) # # extract knn_indices, knn_dist # g_tmp = deepcopy(graph) # g_tmp[graph.nonzero()] = dmat[graph.nonzero()] # knn_indices, knn_dists = extract_indices_dist_from_graph(g_tmp, n_neighbors=n_neighbors) # # knn_indices, knn_dists = extract_indices_dist_from_graph(mapper.graph_, n_neighbors=n_neighbors) # # return mapper.graph_, knn_dists, knn_indices, mapper.transform(X), mapper