Source code for dynamo.tools.clustering

from typing import Any, Iterable, List, Optional, Tuple, Union

try:
    from typing import Literal
except ImportError:
    from typing_extensions import Literal

import numpy as np
import pandas as pd
from anndata import AnnData
from scipy.sparse import csr_matrix, issparse

from ..configuration import DKM
from ..dynamo_logger import main_info
from ..preprocessing.normalization import calc_sz_factor, normalize
from ..preprocessing.QC import filter_genes_by_outliers as filter_genes
from ..preprocessing.pca import pca
from ..preprocessing.transform import log1p
from ..utils import LoggerManager, copy_adata
from .connectivity import generate_neighbor_keys, neighbors
from .utils import update_dict
from .utils_reduceDimension import prepare_dim_reduction, run_reduce_dim


[docs]def hdbscan( adata: AnnData, X_data: Optional[np.ndarray] = None, genes: Optional[List[str]] = None, layer: Optional[str] = None, basis: str = "pca", dims: Optional[List[int]] = None, n_pca_components: int = 30, n_components: int = 2, result_key: Optional[str] = None, copy: bool = False, **hdbscan_kwargs ) -> Optional[AnnData]: """Apply hdbscan to cluster cells in the space defined by basis. HDBSCAN is a clustering algorithm developed by Campello, Moulavi, and Sander (https://doi.org/10.1007/978-3-642-37456-2_14) which extends DBSCAN by converting it into a hierarchical clustering algorithm, followed by using a technique to extract a flat clustering based in the stability of clusters. Here you can use hdbscan to cluster your data in any space specified by `basis`. The data that used to produced from this space can be specified by `layer`. Thus, you are able to use either the unspliced or new RNA data for dimension reduction and clustering. HDBSCAN is a density based method, it thus requires you to perform clustering on relatively low dimension, for example top 30 PCs or top 5 umap dimension with at least several thousands of cells. In practice, HDBSCAN will assign -1 for cells that have low local density and thus not able to confidentially assign to any clusters. The hdbscan package from Leland McInnes, John Healy, Steve Astels Revision is used. Args: adata: An AnnData object. X_data: The user supplied data that will be used for clustering directly. Defaults to None. genes: The list of genes that will be used to subset the data for dimension reduction and clustering. If `None`, all genes will be used. Defaults to None. layer: The layer that will be used to retrieve data for dimension reduction and clustering. If `None`, .X is used. Defaults to None. basis: The space that will be used for clustering. Valid names includes, for example, `pca`, `umap`, `velocity_pca` (that is, you can use velocity for clustering), etc. Defaults to "pca". dims: The list of dimensions that will be selected for clustering. If `None`, all dimensions will be used. Defaults to None. n_pca_components: The number of pca components that will be used. Defaults to 30. n_components: The number of dimension that non-linear dimension reduction will be projected to. Defaults to 2. result_key: The key for storing clustering results in .obs and .uns. Defaults to None. copy: Whether to return a new deep copy of `adata` instead of updating `adata` object passed in arguments. Defaults to False. Raises: ImportError: Package hdbscan not installed. Returns: An updated AnnData object with the clustering updated. `hdbscan` and `hdbscan_prob` are two newly added columns from .obs, corresponding to either the Cluster results or the probability of each cell belong to a cluster. `hdbscan` key in .uns corresponds to a dictionary that includes additional results returned from hdbscan run. Returned if `copy` is true. """ try: from hdbscan import HDBSCAN except ImportError: raise ImportError("You need to install the package `hdbscan`." "install hdbscan via `pip install hdbscan`") logger = LoggerManager.gen_logger("dynamo-hdbscan") logger.log_time() adata = copy_adata(adata) if copy else adata if X_data is None: X_data, n_components, basis = prepare_dim_reduction( adata, genes=genes, layer=layer, basis=basis, dims=dims, n_pca_components=n_pca_components, n_components=n_components, ) if basis in adata.obsm_keys(): X_data = adata.obsm[basis] else: reduction_method = basis.split("_")[-1] embedding_key = "X_" + reduction_method if layer is None else layer + "_" + reduction_method neighbor_result_prefix = "" if layer is None else layer conn_key, dist_key, neighbor_key = generate_neighbor_keys(neighbor_result_prefix) adata = run_reduce_dim( adata, X_data, n_components, n_pca_components, reduction_method, embedding_key=embedding_key, n_neighbors=30, neighbor_key=neighbor_key, cores=1, ) X_data = adata.obsm[basis] X_data = X_data if dims is None else X_data[:, dims] if hdbscan_kwargs is not None and "metric" in hdbscan_kwargs.keys(): if hdbscan_kwargs["metric"] == "cosine": from sklearn.preprocessing import normalize X_data = normalize(X_data, norm="l2") h_kwargs = { "min_cluster_size": 5, "min_samples": None, "metric": "euclidean", "p": None, "alpha": 1.0, "cluster_selection_epsilon": 0.0, "algorithm": "best", "leaf_size": 40, "approx_min_span_tree": True, "gen_min_span_tree": False, "core_dist_n_jobs": 1, "cluster_selection_method": "eom", "allow_single_cluster": False, "prediction_data": False, "match_reference_implementation": False, } h_kwargs = update_dict(h_kwargs, hdbscan_kwargs) cluster = HDBSCAN(**h_kwargs) cluster.fit(X_data) if result_key is None: result_key = "hdbscan" adata.obs[result_key] = cluster.labels_.astype("str") adata.obs[result_key + "_prob"] = cluster.probabilities_ adata.uns[result_key] = { "hdbscan": cluster.labels_.astype("str"), "probabilities_": cluster.probabilities_, "cluster_persistence_": cluster.cluster_persistence_, "outlier_scores_": cluster.outlier_scores_, "exemplars_": cluster.exemplars_, } logger.finish_progress(progress_name="hdbscan density-based-clustering") if copy: return adata return None
[docs]def leiden( adata: AnnData, resolution: float = 1.0, use_weight: bool = False, weights: Optional[Union[str, Iterable]] = None, initial_membership: Optional[List[int]] = None, adj_matrix: Optional[csr_matrix] = None, adj_matrix_key: Optional[str] = None, seed: Optional[int] = None, result_key: Optional[str] = None, layer: Optional[str] = None, obsm_key: Optional[str] = None, selected_cluster_subset: Optional[Tuple[str, List[int]]] = None, selected_cell_subset: Optional[List[int]] = None, directed: bool = True, copy: bool = False, **kwargs ) -> AnnData: """Apply leiden clustering to the input adata. For other general community detection related parameters, please refer to ``dynamo's`` :py:meth:`~dynamo.tl.cluster_community` function. The Leiden algorithm is an improvement of the Louvain algorithm. Based on the cdlib package, the Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the partition, (3) aggregation of the network based on the refined partition, using the non-refined partition to create an initial partition for the aggregate network. Please note that since 2/23/23, we have replaced the integrated louvain method from cdlib package with that from the original leidenalg package. Args: adata: An adata object resolution: The resolution of the clustering that determines the level of detail in the clustering process. An increase in this value will result in the generation of a greater number of clusters. use_weight: Whether to use the weight of the edges in the clustering process. Default False. weights: Weights of edges. Can be either an iterable (list of double) or an edge attribute. initial_membership: List of int. Initial membership for the partition. If None then defaults to a singleton partition. adj_matrix: The adjacency matrix to use for the cluster_community function. adj_matrix_key: The key of the adjacency matrix in adata.obsp used for the cluster_community function. seed: Seed for the random number generator. By default, uses a random seed if nothing is specified. result_key: The key to use for saving clustering results which will be included in both `adata.obs` and adata.uns. layer: The adata layer where cluster algorithms will work on. obsm_key: The key of the `obsm` that points to the expression embedding to be used for dyn.tl.neighbors to calculate the nearest neighbor graph. selected_cluster_subset: A tuple of 2 elements (cluster_key, allowed_clusters) filtering cells in adata based on cluster_key in `adata.obs` and only reserves cells in the allowed clusters. selected_cell_subset: A list of cell indices to cluster. directed: Whether the graph is directed. copy: Return a copy instead of writing to adata. **kwargs: Additional arguments to pass to the cluster_community function. Returns: adata: An updated AnnData object with the leiden clustering results added. The adata is updated up with the `result_key` key to use for saving clustering results which will be included in both `adata.obs` and `adata.uns`. adata.obs[result_key] saves the clustering identify of each cell where the `adata.uns[result_key]` saves the relevant parameters for the leiden clustering. """ kwargs.update( { "resolution_parameter": resolution, "weights": weights, "initial_membership": initial_membership, "seed": seed, } ) return cluster_community( adata, method="leiden", use_weight=use_weight, result_key=result_key, adj_matrix=adj_matrix, adj_matrix_key=adj_matrix_key, layer=layer, obsm_key=obsm_key, cluster_and_subsets=selected_cluster_subset, cell_subsets=selected_cell_subset, directed=directed, copy=copy, **kwargs )
[docs]def louvain( adata: AnnData, resolution: float = 1.0, use_weight: bool = False, weights: Optional[Union[str, Iterable]] = None, initial_membership: Optional[List[int]] = None, adj_matrix: Optional[csr_matrix] = None, adj_matrix_key: Optional[str] = None, seed: Optional[int] = None, result_key: Optional[str] = None, layer: Optional[str] = None, obsm_key: Optional[str] = None, selected_cluster_subset: Optional[Tuple[str, List[int]]] = None, selected_cell_subset: Optional[List[int]] = None, directed: bool = True, copy: bool = False, **kwargs ) -> AnnData: """Apply louvain clustering to adata. For other general community detection related parameters, please refer to ``dynamo's`` :py:meth:`~dynamo.tl.cluster_community` function. Based on the cdlib package, the Louvain algorithm optimises the modularity in two elementary phases: (1) local moving of nodes; (2) aggregation of the network. In the local moving phase, individual nodes are moved to the community that yields the largest increase in the quality function. In the aggregation phase, an aggregate network is created based on the partition obtained in the local moving phase. Each community in this partition becomes a node in the aggregate network. The two phases are repeated until the quality function cannot be increased further. Please note that since 2/23/23, we have replaced the integrated louvain method from cdlib package with that from the original louvain package. Args: adata: An adata object resolution: The resolution of the clustering that determines the level of detail in the clustering process. An increase in this value will result in the generation of a greater number of clusters. use_weight: Whether to use the weight of the edges in the clustering process. Default False weights: Weights of edges. Can be either an iterable (list of double) or an edge attribute. initial_membership: List of int. Initial membership for the partition. If None then defaults to a singleton partition. adj_matrix: The adjacency matrix to use for the cluster_community function. Default None. adj_matrix_key: The adjacency matrix key in adata.obsp used for the cluster_community function. Default None. seed: Seed for the random number generator. By default, uses a random seed if nothing is specified. result_key: the key to use for saving clustering results which will be included in both `adata.obs` and `adata.uns`. layer: The adata layer where cluster algorithms will work on. obsm_key: The key of the obsm that points to the expression embedding to be used for dyn.tl.neighbors to calculate the nearest neighbor graph. selected_cluster_subset: A tuple of 2 elements (cluster_key, allowed_clusters) filtering cells in adata based on cluster_key in `adata.obs` and only reserves cells in the allowed clusters. selected_cell_subset: A list of cell indices to cluster. directed: Whether the graph is directed. copy: Return a copy instead of writing to adata. **kwargs: Additional arguments to pass to the clustering function. Returns: adata: An updated AnnData object with the leiden clustering results added. The adata is updated up with the `result_key` key to use for saving clustering results which will be included in both adata.obs and adata.uns. adata.obs[result_key] saves the clustering identify of each cell where the adata.uns[result_key] saves the relevant parameters for the leiden clustering . """ kwargs.update( { "resolution_parameter": resolution, "weights": weights, "initial_membership": initial_membership, "seed": seed, } ) return cluster_community( adata, method="louvain", use_weight=use_weight, adj_matrix=adj_matrix, adj_matrix_key=adj_matrix_key, result_key=result_key, layer=layer, obsm_key=obsm_key, cluster_and_subsets=selected_cluster_subset, cell_subsets=selected_cell_subset, directed=directed, copy=copy, **kwargs )
def cluster_community( adata: AnnData, method: Literal["leiden", "louvain"] = "leiden", result_key: Optional[str] = None, adj_matrix: Optional[Union[list, np.array, csr_matrix]] = None, adj_matrix_key: Optional[str] = None, use_weight: bool = False, no_community_label: int = -1, layer: Optional[str] = None, obsm_key: Optional[str] = None, cell_subsets: Optional[List[int]] = None, cluster_and_subsets: Optional[Tuple[str, List[int]]] = None, directed: bool = True, copy: bool = False, **kwargs ) -> Optional[AnnData]: """A base function for detecting communities and inserting results into adata with algorithms specified parameters passed in. Adjacent matrix retrieval priority: adj_matrix > adj_matrix_key > others Args: adata: An AnnData object. method: The algorithm to cluster the AnnData object. Can be one of "leiden", "louvain". Defaults to "leiden". result_key: The key where the results will be stored in obs. Defaults to None. adj_matrix: The adjacency matrix key used for clustering. Defaults to None. adj_matrix_key: The key for adj_matrix stored in adata.obsp. Defaults to None. use_weight: Whether to use graph weight or not. False means to use connectivities only (0/1 integer values). Defaults to True. no_community_label: The label value used for nodes not contained in any community. Defaults to -1. layer: The adata layer on which cluster algorithms will work. Defaults to None. obsm_key: The key in obsm corresponding to the data that would be used for finding neighbors. Defaults to None. cell_subsets: A subset of cells in adata that would be clustered. Could be a list of indices or a list of cell names. Defaults to None. cluster_and_subsets: A tuple of (cluster_key, allowed_clusters).Filtering cells in adata based on cluster_key in `adata.obs` and only reserve cells in the allowed clusters. Defaults to None. directed: Whether the edges in the graph should be directed. Defaults to False. copy: Whether to return a new updated AnnData object or updated the original one inplace. Defaults to False. Raises: ValueError: `adj_matrix_key` and `layer` conflicted. ValueError: `adj_matrix_key` not found in `.obsp`. Returns: An updated AnnData object if `copy` is set to be true. """ adata = copy_adata(adata) if copy else adata if (layer is not None) and (adj_matrix_key is not None): raise ValueError("Please supply one of adj_matrix_key and layer") if use_weight: conn_type = DKM.OBSP_ADJ_MAT_DIST else: conn_type = DKM.OBSP_ADJ_MAT_CONNECTIVITY # build adj_matrix_key if adj_matrix_key is None: if layer is None: if obsm_key is None: adj_matrix_key = conn_type else: adj_matrix_key = obsm_key + "_" + conn_type else: adj_matrix_key = layer + "_" + conn_type # try generating required adj_matrix according to # user inputs through "neighbors" interface if adj_matrix is None: main_info("accessing adj_matrix_key=%s built from args for clustering..." % (adj_matrix_key)) if not (adj_matrix_key in adata.obsp): if layer is None: if obsm_key is None: neighbors(adata) else: X_data = adata.obsm[obsm_key] neighbors(adata, X_data=X_data, result_prefix=obsm_key) else: main_info("using PCA genes for clustering based on adata.var.use_for_pca ...") X_data = adata[:, adata.var.use_for_pca].layers[layer] neighbors(adata, X_data=X_data, result_prefix=layer) if not (adj_matrix_key in adata.obsp): raise ValueError("%s does not exist in adata.obsp" % adj_matrix_key) graph_sparse_matrix = adata.obsp[adj_matrix_key] else: main_info("using adj_matrix from arg for clustering...") graph_sparse_matrix = adj_matrix # build result_key for storing results if result_key is None: if all((cell_subsets is None, cluster_and_subsets is None)): result_key = "%s" % (method) if layer is None else layer + "_" + method else: result_key = "subset_" + method if layer is None else layer + "_subset_" + method valid_indices = None if cell_subsets is not None: if type(cell_subsets[0]) == str: valid_indices = [adata.obs_names.get_loc(cur_cell) for cur_cell in cell_subsets] else: valid_indices = cell_subsets graph_sparse_matrix = graph_sparse_matrix[valid_indices, :][:, valid_indices] if cluster_and_subsets is not None: cluster_col, allowed_clusters = ( cluster_and_subsets[0], cluster_and_subsets[1], ) valid_indices_bools = np.isin(adata.obs[cluster_col], allowed_clusters) valid_indices = np.argwhere(valid_indices_bools).flatten() graph_sparse_matrix = graph_sparse_matrix[valid_indices, :][:, valid_indices] community_result = cluster_community_from_graph( method=method, graph_sparse_matrix=graph_sparse_matrix, directed=directed, **kwargs ) labels = np.zeros(len(adata), dtype=int) + no_community_label # No subset required case, use all indices if valid_indices is None: valid_indices = np.arange(0, len(adata)) if hasattr(community_result, "membership"): labels[valid_indices] = community_result.membership else: for i, community in enumerate(community_result.communities): labels[valid_indices[community]] = i # clusters need to be categorical strings adata.obs[result_key] = pd.Categorical(labels.astype(str)) adata.uns[result_key] = { "method": method, "adj_matrix_key": adj_matrix_key, "use_weight": use_weight, "layer": layer, "layer_conn_type": conn_type, "cell_subsets": cell_subsets, "cluster_and_subsets": cluster_and_subsets, "directed": directed, } if copy: return adata def cluster_community_from_graph( graph=None, graph_sparse_matrix: Union[np.ndarray, csr_matrix, None] = None, method: Literal["leiden", "louvain"] = "louvain", directed: bool = False, **kwargs ) -> Any: """A function takes a graph as input and clusters its nodes into communities using one of two algorithms: Leiden, Louvain. Args: graph (nx.Graph): The input graph that would be directly used for clustering. Defaults to None. graph_sparse_matrix: A sparse matrix that would be converted to a graph if `graph` is not supplied. method: The algorithm to cluster the AnnData object. Can be one of "leiden", "louvain". directed: Whether the edges in the graph should be directed. Defaults to False. Defaults to False. Raises: ImportError: Networkx not installed. ValueError: Neither graph nor graph_sparse_matrix is valid. KeyError: Resolution is not found in kwargs for louvain algorithm. KeyError: Randomize is not found in kwargs for louvain algorithm. NotImplementedError: The `method` is invalid. Returns: An NodeClustering object that contains the communities detected by the chosen algorithm. """ logger = LoggerManager.get_main_logger() logger.info("Detecting communities on graph...") try: import igraph import leidenalg except ImportError: raise ImportError( "Please install networkx, igraph, leidenalg via " "`pip install networkx igraph leidenalg` for clustering on graph." ) initial_membership = kwargs.pop("initial_membership", None) weights = kwargs.pop("weights", None) seed = kwargs.pop("seed", None) if graph is not None: # highest priority main_info("using graph from arg for clustering...") elif issparse(graph_sparse_matrix): logger.info("Converting graph_sparse_matrix to igraph object", indent_level=2) if directed: graph = igraph.Graph.Weighted_Adjacency(graph_sparse_matrix, mode="directed") else: graph = igraph.Graph.Weighted_Adjacency(graph_sparse_matrix, mode="undirected") else: raise ValueError("Expected graph inputs are invalid") if method == "leiden": # ModularityVertexPartition does not accept a resolution_parameter, instead RBConfigurationVertexPartition. if kwargs["resolution_parameter"] != 1: partition_type = leidenalg.RBConfigurationVertexPartition else: partition_type = leidenalg.ModularityVertexPartition kwargs.pop("resolution_parameter") coms = leidenalg.find_partition( graph, partition_type, initial_membership=initial_membership, weights=weights, seed=seed, **kwargs ) elif method == "louvain": try: import louvain except ImportError: raise ImportError("Please install louvain via `pip install louvain==0.8.0` for clustering on graph.") logger.warning("louvain is not maintained, we recommend using leiden instead.") coms = louvain.find_partition( graph, louvain.RBConfigurationVertexPartition, initial_membership=initial_membership, weights=weights, seed=seed, **kwargs ) else: raise NotImplementedError("clustering algorithm not implemented yet") logger.finish_progress(progress_name="Community clustering with %s" % (method)) return coms
[docs]def scc( adata: AnnData, min_cells: int = 100, spatial_key: str = "spatial", e_neigh: int = 30, s_neigh: int = 6, resolution: Optional[float] = None, copy: bool = False, ) -> Optional[AnnData]: """Spatially constrained clustering (scc) to identify continuous tissue domains. Args: adata: A normalized AnnData object. min_cells: Minimal number of cells the gene expressed. Defaults to 100. spatial_key: The key in `.obsm` corresponding to the spatial coordinate of each bucket. Defaults to "spatial". e_neigh: The number of nearest neighbor in gene expression space. Defaults to 30. s_neigh: The number of nearest neighbor in physical space. Defaults to 6. resolution: The resolution parameter of the leiden clustering algorithm. Defaults to None. copy: Whether to return a new deep copy of `adata` instead of updating `adata` object passed in arguments. Defaults to False. Returns: An updated AnnData object with cluster info stored in `.obs[scc_e_{a}_s{b}]` if `copy` is set to be true. """ filter_genes(adata, min_cell_s=min_cells) adata.uns["pp"] = {} calc_sz_factor(adata, layers="X") normalize(adata, layers="X") log1p(adata) pca(adata, n_pca_components=30, pca_key="X_pca") neighbors(adata, n_neighbors=e_neigh) if "X_" + spatial_key not in adata.obsm.keys(): adata.obsm["X_" + spatial_key] = adata.obsm[spatial_key].copy() neighbors(adata, n_neighbors=s_neigh, basis=spatial_key, result_prefix="spatial") conn = adata.obsp["connectivities"].copy() conn.data[conn.data > 0] = 1 adj = conn + adata.obsp["spatial_connectivities"] adj.data[adj.data > 0] = 1 leiden(adata, adj_matrix=adj, resolution=resolution, result_key="scc_e" + str(e_neigh) + "_s" + str(s_neigh)) if copy: return adata return None
def purity( adata: AnnData, neighbor: int = 30, resolution: Optional[float] = None, spatial_key: str = "spatial", neighbors_key: str = "spatial_connectivities", cluster_key: str = "leiden", ) -> float: """Calculate the purity of the scc's clustering results. Args: adata: an AnnData object. neighbor: the number of nearest neighbor in physical space. Defaults to 30. resolution: the resolution parameter of the leiden clustering algorithm. Defaults to None. spatial_key: the key in `.obsm` corresponding to the spatial coordinate of each bucket. Defaults to "spatial". neighbors_key: the key in `.obsp` that corresponds to the spatial nearest neighbor graph. Defaults to "spatial_connectivities". cluster_key: the key in `.obsm` that corresponds to the clustering identity. Defaults to "leiden". Returns: The average purity score across cells. """ if neighbors_key not in adata.obsp.keys(): neighbors(adata, n_neighbors=neighbor, basis=spatial_key, result_prefix=neighbors_key.split("_")[0]) neighbor_graph = adata.obsp[neighbors_key] if cluster_key not in adata.obs.columns: leiden(adata, adj_matrix=neighbor_graph, resolution=resolution, result_key=cluster_key) cluster = adata.obs[cluster_key] purity_score = np.zeros(adata.n_obs) for i in np.arange(adata.n_obs): cur_cluster = cluster[i] other_cluster = neighbor_graph[0].nonzero()[1] other_cluster = cluster[other_cluster] other_cluster = other_cluster[: min([neighbor, len(other_cluster)])] purity_score[i] = sum(other_cluster == cur_cluster) / len(other_cluster) purity_score = purity_score.mean() return purity_score